題目列表(包括答案和解析)
已知函數(shù) R).
(Ⅰ)若 ,求曲線
在點(diǎn)
處的的切線方程;
(Ⅱ)若 對(duì)任意
恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問(wèn)中,利用當(dāng)時(shí),
.
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)()處的曲線的切線方程為:
第二問(wèn)中,由題意得,即
即可。
Ⅰ)當(dāng)時(shí),
.
,
因?yàn)榍悬c(diǎn)為(),
則
,
所以在點(diǎn)()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,
故在
上單調(diào)遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當(dāng)時(shí),
在
上恒成立,
故在
上單調(diào)遞增,
即
.
……10分
(2)當(dāng)時(shí),令
,對(duì)稱(chēng)軸
,
則在
上單調(diào)遞增,又
① 當(dāng),即
時(shí),
在
上恒成立,
所以在
單調(diào)遞增,
即
,不合題意,舍去
②當(dāng)時(shí),
,
不合題意,舍去 14分
綜上所述:
197 |
4 |
197 |
4 |
z |
2+i |
2 |
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)?。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
第二問(wèn),由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時(shí),
,有
;當(dāng)
時(shí),
,有
;當(dāng)x=1時(shí),
,有
解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
(11)由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時(shí),
,有
;當(dāng)
時(shí),
,有
;當(dāng)x=1時(shí),
,有
在中,滿(mǎn)足
,
是
邊上的一點(diǎn).
(Ⅰ)若,求向量
與向量
夾角的正弦值;
(Ⅱ)若,
=m (m為正常數(shù)) 且
是
邊上的三等分點(diǎn).,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一問(wèn)中,利用向量的數(shù)量積設(shè)向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求
第二問(wèn)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以
,
(1)當(dāng)時(shí),則
=
(2)當(dāng)時(shí),則
=
第三問(wèn)中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以即
于是
得
從而
運(yùn)用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以
,
(1)當(dāng)時(shí),則
=
;-2分
(2)當(dāng)時(shí),則
=
;--2分
(Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以即
于是
得
從而---2分
==
=…………………………………2分
令,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時(shí),
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com