日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:因?yàn)閣為復(fù)數(shù).argw=.所以設(shè)w=r(cos+isin). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

          (Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

          第一問(wèn)中,利用當(dāng)時(shí),

          因?yàn)榍悬c(diǎn)為(), 則,                 

          所以在點(diǎn)()處的曲線的切線方程為:

          第二問(wèn)中,由題意得,即可。

          Ⅰ)當(dāng)時(shí),

          ,                                  

          因?yàn)榍悬c(diǎn)為(), 則,                  

          所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當(dāng)時(shí),上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當(dāng)時(shí),令,對(duì)稱(chēng)軸

          上單調(diào)遞增,又    

          ① 當(dāng),即時(shí),上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當(dāng)時(shí),, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>

          若方程sinwx=1(w>0,0≤x≤2)至少有50個(gè)解,則w的最小值為
          197
          4
          π
          197
          4
          π

          查看答案和解析>>

          已知z、w、x為復(fù)數(shù),且x=(1+3i)•z,w=
          z
          2+i
          且|w|=5
          2

          (1)若w為大于0的實(shí)數(shù),求復(fù)數(shù)x.
          (2)若x為純虛數(shù),求復(fù)數(shù)w.

          查看答案和解析>>

          設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)?。網(wǎng)]

          (Ⅰ)求a、b的值; 

          (Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]

          【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,gx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          第二問(wèn),由(I)可知,令

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

          解:因?yàn)?i>f(x)=lnx,gx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          (11)由(I)可知,令

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

           

          查看答案和解析>>

          中,滿(mǎn)足,邊上的一點(diǎn).

          (Ⅰ)若,求向量與向量夾角的正弦值;

          (Ⅱ)若,=m  (m為正常數(shù)) 且邊上的三等分點(diǎn).,求值;

          (Ⅲ)若的最小值。

          【解析】第一問(wèn)中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則

          =,得,又,則為所求

          第二問(wèn)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

          (1)當(dāng)時(shí),則= 

          (2)當(dāng)時(shí),則=

          第三問(wèn)中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,;

          所以于是

          從而

          運(yùn)用三角函數(shù)求解。

          (Ⅰ)解:設(shè)向量與向量的夾角為,則

          =,得,又,則為所求……………2

          (Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以

          (1)當(dāng)時(shí),則=-2分

          (2)當(dāng)時(shí),則=--2分

          (Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,

          所以于是

          從而---2

          ==

          =…………………………………2

          ,,則函數(shù),在遞減,在上遞增,所以從而當(dāng)時(shí),

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案