日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又由解得y=2. 查看更多

           

          題目列表(包括答案和解析)

          解::因?yàn)?img width=364 height=41 src="http://thumb.zyjl.cn/pic1/1899/sx/151/231751.gif">,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點(diǎn),又因?yàn)閥=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點(diǎn)個(gè)數(shù)只有一個(gè)方法2:把函數(shù)的零點(diǎn)個(gè)數(shù)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為判斷方程解的個(gè)數(shù)問(wèn)題,近而轉(zhuǎn)化成判斷交點(diǎn)個(gè)數(shù)問(wèn)題,在坐標(biāo)系中畫出圖形


          由圖看出顯然一個(gè)交點(diǎn),因此函數(shù)的零點(diǎn)個(gè)數(shù)只有一個(gè)

          袋中有50個(gè)大小相同的號(hào)牌,其中標(biāo)著0號(hào)的有5個(gè),標(biāo)著n號(hào)的有n個(gè)(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號(hào)碼的分布列,以及取得號(hào)碼為偶數(shù)的概率.

          查看答案和解析>>

          已知x,y∈R+,且x+y=2,求
          1
          x
          +
          2
          y
          的最小值;給出如下解法:由x+y=2得2≥2
          xy
          ①,即
          1
          xy
          ≥1
          ②,又
          1
          x
          +
          2
          y
          ≥2
          2
          xy
          ③,由②③可得
          1
          x
          +
          2
          y
          ≥2
          2
          ,故所求最小值為2
          2
          .請(qǐng)判斷上述解答是否正確
          不正確
          不正確
          ,理由
          ①和③不等式不能同時(shí)取等號(hào).
          ①和③不等式不能同時(shí)取等號(hào).

          查看答案和解析>>

          已知x,y∈R+,且x+y=2,求
          1
          x
          +
          2
          y
          的最小值;給出如下解法:由x+y=2得2≥2
          xy
          ①,即
          1
          xy
          ≥1
          ②,又
          1
          x
          +
          2
          y
          ≥2
          2
          xy
          ③,由②③可得
          1
          x
          +
          2
          y
          ≥2
          2
          ,故所求最小值為2
          2
          .請(qǐng)判斷上述解答是否正確______,理由______.

          查看答案和解析>>

          已知x,y∈R+且x+y=4,求
          1
          x
          +
          2
          y
          的最小值.某學(xué)生給出如下解法:由x+y=4得,4≥2
          xy
          ①,即
          1
          xy
          1
          2
          ②,又因?yàn)?span id="ot3rg70" class="MathJye">
          1
          x
          +
          2
          y
          ≥2
          2
          xy
          ③,由②③得
          1
          x
          +
          2
          y
          2
          ④,即所求最小值為
          2
          ⑤.請(qǐng)指出這位同學(xué)錯(cuò)誤的原因
           

          查看答案和解析>>

          已知x,y∈R+且x+y=4,求
          1
          x
          +
          2
          y
          的最小值.某學(xué)生給出如下解法:由x+y=4得,4≥2
          xy
          ①,即
          1
          xy
          1
          2
          ②,又因?yàn)?span dealflag="1" mathtag="math" >
          1
          x
          +
          2
          y
          ≥2
          2
          xy
          ③,由②③得
          1
          x
          +
          2
          y
          2
          ④,即所求最小值為
          2
          ⑤.請(qǐng)指出這位同學(xué)錯(cuò)誤的原因______.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案