日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∴f(x)在區(qū)間[1.+∞)上的最小值為f(1)=. 查看更多

           

          題目列表(包括答案和解析)

          19.已知函數(shù)fx)=x2+2x·tanθ-1,x∈[-1,],其中θ∈(-).

          (1)當θ=-時,求函數(shù)fx)的最大值與最小值;

          (2)求θ的取值范圍,使yfx)在區(qū)間[-1,]上是單調函數(shù).

          查看答案和解析>>

          已知函數(shù)
          (I)求f(x)的單調區(qū)間;
          (II)若對任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍;
          (III)設F(x)=,曲線y=F(x)上是否總存在兩點P,Q,使得△POQ是以O(O為坐標原點)為鈍角柄點的鈍角三角開,且最長邊的中點在y軸上?請說明理由。

          查看答案和解析>>

          已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.

          (1)求f(x)的解析式;

          (2)若f(x)在區(qū)間[2a,a+1]上不單調,求實數(shù)的取值范圍;

          (3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.

          查看答案和解析>>

          設函數(shù)f(x)=x4bx2cxd,當xt1時,f(x)有極小值.

          (1)若b=-6時,函數(shù)fx)有極大值,求實數(shù)c的取值范圍;

          (2)在(1)的條件下,若存在實數(shù)c,使函數(shù)f(x)在閉區(qū)間[m-2,m+2]上單調遞增,求m的取值范圍;

          (3)若函數(shù)f(x)只有一個極值點,且存在t2∈(t1,t1+1),使f ′(t2)=0,證明:函數(shù)g(x)=f(x)-x2t1x在區(qū)間(t1,t2)內最多有一個零點.

          查看答案和解析>>

          (本小題滿分16分)設函數(shù)fx)=x4bx2cxd,當xt1時,fx)有極小值.
          (1)若b=-6時,函數(shù)fx)有極大值,求實數(shù)c的取值范圍;
          (2)在(1)的條件下,若存在實數(shù)c,使函數(shù)fx)在閉區(qū)間[m-2,m+2]上單調遞增,求實數(shù)m的取值范圍;
          (3)若函數(shù)fx)只有一個極值點,且存在t2∈(t1,t1+1),使f ′(t2)=0,證明:函數(shù)gx)=fx)-x2t1x在區(qū)間(t1t2)內最多有一個零點.

          查看答案和解析>>


          同步練習冊答案