日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)設(shè).函數(shù).若對于任意.總存在.使得成立.求的取值范圍. 查看更多

           

          題目列表(包括答案和解析)

          對于定義在D上的函數(shù)y=f(x),若同時滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
          (1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
          (2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對一切t∈R恒成立,求實數(shù)x的范圍;
          (3)若F(x)=mx+
          x2+2x+n
          ,x∈[-2,+∞)
          是“平底型”函數(shù),求m和n的值.

          查看答案和解析>>

          函數(shù)f(x)=
          2x
          x2+1
          的定義域為[-
          1
          2
          ,
          1
          2
          ]

          (1)求函數(shù)f(x)的值域;
          (2)設(shè)函數(shù)g(x)=x3-3ax+
          7
          8
          (-
          1
          2
          ≤x≤
          1
          2
          ,且a≥
          1
          4
          )
          .若對于任意x1[-
          1
          2
          ,
          1
          2
          ]
          ,總存在x2[-
          1
          2
          ,
          1
          2
          ]
          ,使得g(x2)=f(x1)成立,求a的取值范圍.

          查看答案和解析>>

          對于定義在D上的函數(shù)y=f(x),若同時滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
          (1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
          (2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對一切t∈R恒成立,求實數(shù)x的范圍;
          (3)若是“平底型”函數(shù),求m和n的值.

          查看答案和解析>>

          對于定義在D上的函數(shù)y=f(x),若同時滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
          (1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
          (2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對一切t∈R恒成立,求實數(shù)x的范圍;
          (3)若是“平底型”函數(shù),求m和n的值.

          查看答案和解析>>

          設(shè)函數(shù),其中
          (1)記集合不能構(gòu)成一個三角形的三邊長,且,則所對應(yīng)的的零點的取值集合為         
          (2)若的三邊長,則下列結(jié)論正確的是         (寫出所有正確結(jié)論的序號).
          ①對于區(qū)間內(nèi)的任意,總有成立;
          ②存在實數(shù),使得不能同時成為任意一個三角形的三條邊長;
          ③若,則存在實數(shù),使.(提示 :
          (第(1)空2分,第(2)空3分)

          查看答案和解析>>

          一、選擇題(每小題5分,共60分)

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          D

          A

          C

          D

          A

          D

          B

          D

          B

          B

          A

          C

          二、填空題(每小題5分,共20分)

            13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

          三、解答題

          17(10分).解:原不等式等價于-----------------------------------2分

          當(dāng)--------------------------------------------4分

          當(dāng)

           

          -------------------------------------------------6分

           

          -------------------------------------------------8分

          綜上:   --------------------------------10分

          18(12分). 解:(Ⅰ)

                                   ----------------3分

                -----------------------------4分

          ,  

          的單調(diào)區(qū)間為     ----------------6分

          (Ⅱ)由----------7分

          的內(nèi)角,---------8分

                    -------------------10分

               ------------12分

          19(12分).解:⑴對任意的正數(shù)均有

          ----------2分

          ,                 ----------------------------------------4分

          是定義在上的單調(diào)函數(shù),.     ----------6分

          (2)當(dāng)時,,.----------8分

          當(dāng)時,,

          .                 ----------------------------------------10分

          為等差數(shù)列.

          ,.                      -----------------------------------------12分

          20(12分). (1)y==  

               t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

               ∴y===t+ -1

               ∵y=t+ -1在t∈[1,2)上為增函數(shù)  ∴y∈[1,)     即M=[1,)           6分

            (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

               又∁UM=(-∞,1)∪[,+∞)                                             10分

               要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

          21(12分).解:對函數(shù)求導(dǎo),得

          ----------------------------2分

          解得

          當(dāng)變化時,的變化情況如下表:

          x

          0

           

          0

           

          減函數(shù)

          增函數(shù)

                                                          ----------------------4分

          所以,當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù);

                     當(dāng)時,的值域為   ----------------------------6分

          (Ⅱ)對函數(shù)求導(dǎo),得

                                           

              因此,當(dāng)時,

          因此當(dāng),g(x)為減函數(shù),從而當(dāng)時有個g(x)

          又g(1)=   ----------------8分

          若對于任意,,存在,使得,則

          []

                        ----------------------------------------10分

          式得

          式得

          故:的取值范圍為                 -----------------------------------12分

          22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 兩式相減得, an+1=2an+1----------------2分

               數(shù)列{an+λ}是等比數(shù)列  即: an+1+λ=2(an+λ),∴λ=1.

                ∵a1=s1=2a1-1,∴a1=1 

               ∵數(shù)列{ an+1}是首項為2,公比為2的等比數(shù)列          ------------------------4分

          ∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

             (2)∵an=2n -1

               ∴bn ====-----------------10分

               ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

           

           

           


          同步練習(xí)冊答案