日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 13.設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與 查看更多

           

          題目列表(包括答案和解析)

          (12分)設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,且在x=-1處取得極值.

          (Ⅰ)求a,,的值;

          (Ⅱ)求函數(shù)上的最大值和最小值。

          查看答案和解析>>

          設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線 平行,導(dǎo)函數(shù)的最小值為  

          (Ⅰ)求,,的值;

          (Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)上的最大值和最小值  

          查看答案和解析>>

          設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,且在x=-1處取得極值.

          (Ⅰ)求a,的值;

          (Ⅱ)求函數(shù)上的最大值和最小值。

          查看答案和解析>>

          (本題滿分12分)設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.

          (1)求,,的值;

          (2)若時(shí),恒成立,求的范圍;

          (3)設(shè),當(dāng)時(shí),求的最小值.

           

          查看答案和解析>>

          20.設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為

          (Ⅰ)求的值;

          (Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)上的最大值和最小值.

           

          查看答案和解析>>

          一、選擇題(每小題5分,共60分)

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          D

          A

          C

          D

          A

          D

          B

          D

          B

          B

          A

          C

          二、填空題(每小題5分,共20分)

            13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

          三、解答題

          17(10分).解:原不等式等價(jià)于-----------------------------------2分

          當(dāng)--------------------------------------------4分

          當(dāng)

           

          -------------------------------------------------6分

           

          -------------------------------------------------8分

          綜上:   --------------------------------10分

          18(12分). 解:(Ⅰ)

                                   ----------------3分

                -----------------------------4分

          ,  

          的單調(diào)區(qū)間為     ----------------6分

          (Ⅱ)由----------7分

          的內(nèi)角,---------8分

                    -------------------10分

               ------------12分

          19(12分).解:⑴對(duì)任意的正數(shù)均有

          ----------2分

          ,                 ----------------------------------------4分

          是定義在上的單調(diào)函數(shù),.     ----------6分

          (2)當(dāng)時(shí),,,.----------8分

          當(dāng)時(shí),,

          .                 ----------------------------------------10分

          為等差數(shù)列.

          ,.                      -----------------------------------------12分

          20(12分). (1)y==  

               t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

               ∴y===t+ -1

               ∵y=t+ -1在t∈[1,2)上為增函數(shù)  ∴y∈[1,)     即M=[1,)           6分

            (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

               又∁UM=(-∞,1)∪[,+∞)                                             10分

               要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

          21(12分).解:對(duì)函數(shù)求導(dǎo),得

          ----------------------------2分

          解得

          當(dāng)變化時(shí),的變化情況如下表:

          x

          0

           

          0

           

          減函數(shù)

          增函數(shù)

                                                          ----------------------4分

          所以,當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù);

                     當(dāng)時(shí),的值域?yàn)?sub>   ----------------------------6分

          (Ⅱ)對(duì)函數(shù)求導(dǎo),得

                                           

              因此,當(dāng)時(shí),

          因此當(dāng),g(x)為減函數(shù),從而當(dāng)時(shí)有個(gè)g(x)

          又g(1)=   ----------------8分

          若對(duì)于任意,,存在,使得,則

          []

                        ----------------------------------------10分

          式得

          式得

          故:的取值范圍為                 -----------------------------------12分

          22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 兩式相減得, an+1=2an+1----------------2分

               數(shù)列{an+λ}是等比數(shù)列  即: an+1+λ=2(an+λ),∴λ=1.

                ∵a1=s1=2a1-1,∴a1=1 

               ∵數(shù)列{ an+1}是首項(xiàng)為2,公比為2的等比數(shù)列          ------------------------4分

          ∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

             (2)∵an=2n -1

               ∴bn ====-----------------10分

               ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

           

           

           


          同步練習(xí)冊(cè)答案