日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. m>4或 查看更多

           

          題目列表(包括答案和解析)

          4. m>2或m<-2 解析:因為f(x)=在(-1,1)內(nèi)有零點,所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2

          隨機變量的所有等可能取值為1,2…,n,若,則(    )

          A. n=3        B.n=4          C. n=5        D.不能確定

          5.m=-3,n=2 解析:因為的兩零點分別是1與2,所以,即,解得

          6.解析:因為只有一個零點,所以方程只有一個根,因此,所以

          查看答案和解析>>

          已知三次函數(shù)是增函數(shù),則m的取值范圍是(   )

          A.m<2或m>4       B.-4<m<-2        C.2<m<4           D.以上皆不正確

           

          查看答案和解析>>

          已知三次函數(shù)f(x)=x3-(4m-1)x2+(15m2-2m-7)x+2在x∈(-∞,+∞)是增函數(shù),則m的取值范圍是(  )

          A.m<2或m>4    B.-4<m<-2    C.    D.以上皆不正確

           

          查看答案和解析>>

          已知,設是方程的兩個根,不等式對任意實數(shù)恒成立;函數(shù)有兩個不同的零點.求使“P且Q”為真命題的實數(shù)的取值范圍.

          【解析】本試題主要考查了命題和函數(shù)零點的運用。由題設x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當a∈[1,2]時,的最小值為3. 當a∈[1,2]時,的最小值為3.

          要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          可得到要使“P∧Q”為真命題,只需P真Q真即可。

          解:由題設x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當a∈[1,2]時,的最小值為3.

          要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          綜上,要使“P∧Q”為真命題,只需P真Q真,即

          解得實數(shù)m的取值范圍是(4,8]

           

          查看答案和解析>>

          如果方程
          x2
          4-m
          +
          y2
          m-3
          =1
          表示焦點在y軸上的雙曲線,則m的取值范圍是(  )

          查看答案和解析>>


          同步練習冊答案