日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù) 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是兩兩不等的常數(shù)),則
          a
          f′(a)
          +
          b
          f′(b)
          +
          c
          f′(c)
          =
           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=cos(2x+
          π
          3
          )+sin2x.
          (1)求函數(shù)f(x)的最大值和最小正周期.
          (2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
          1
          3
          ,f(
          C
          3
          )=-
          1
          4
          ,且C為非鈍角,求sinA.

          查看答案和解析>>

          設(shè)函數(shù)f(x)=
          ax2+bx+c
          (a<0)
          的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為(  )
          A、-2B、-4
          C、-8D、不能確定

          查看答案和解析>>

          設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱(chēng)軸是直線(xiàn)x=
          π
          8

          (1)求φ;
          (2)若函數(shù)y=2f(x)+a,(a為常數(shù)a∈R)在x∈[
          11π
          24
          ,
          4
          ]
          上的最大值和最小值之和為1,求a的值.

          查看答案和解析>>

          設(shè)函數(shù)f(x)=
          x-3,x≥10
          f(x+5),x<10
          ,則f(5)=
           

          查看答案和解析>>

           

          一、選擇題:本大題共12小題,每小題5分,共60分.

          1.B   2.C   3.【理】C  【文】B    4.A    5.C   6.D

          7.C   8.C   9.【理】D   【文】B    10.A   11.B 12.【理】C  【文】D

          二、填空題:本大題共4小題,每小題5分,共20分.

          13. 2           14.           15.     16.    

          三、解答題:本大題共6小題,共70分.

          17.(本題滿(mǎn)分10分)

          解:.……….2分

             (Ⅰ)當(dāng),

          .             ………5分

             (Ⅱ)【理】    ………7分

          ,

          .              ………10分

          【文】        ………8分

           .          ………10分

          18.(本題滿(mǎn)分12分)

          解:(Ⅰ)甲射擊一次,未擊中目標(biāo)的概率為,     ………2分

          因此,甲射擊兩次,至少擊中目標(biāo)一次的概率為.       ……...6分

          (Ⅱ)設(shè)“甲、乙兩人各射擊兩次,甲擊中目標(biāo)2次,乙未擊中”為事件;“甲、乙兩人各射擊兩次,乙擊中目標(biāo)2次,甲未擊中”為事件;“甲、乙兩人各射擊兩次,甲、乙各擊中1次”為事件,

          ;               ………7分

          ;              ………8分

          .          ………9分

          因?yàn)槭录凹、乙兩人各射擊兩次,共擊中目?biāo)2次”為,而彼此互斥,

          所以,甲、乙兩人各射擊兩次,共擊中目標(biāo)2次的概率為

          .           ……….12 分     

          19.(本題滿(mǎn)分12分))

          【理科】解:(Ⅰ)

          兩式相減得

          從而,           ………3分

          ,可知..

          .

          數(shù)列是公比為2,首項(xiàng)為4的等比數(shù)列,           ………5分

          因此  ()          ………6分

             (Ⅱ)據(jù)(Ⅰ)

          (當(dāng)且僅當(dāng)n=5時(shí)取等號(hào)).                ………10分

          恒成立,

          因此的最小值是   .    ………12分

             【文科】(Ⅰ)∵等差數(shù)列中,公差

          ,                 ………3分

                        ………6分

             (Ⅱ)      ,         ………8分

            令,即得,   ………10分

          .

                數(shù)列為等差數(shù)列,∴存在一個(gè)非零常數(shù),使也為等差數(shù)列.   ………12分

          20.(本題滿(mǎn)分12分)

          證明(Ⅰ)法1:取中點(diǎn),連接

            ∵中點(diǎn),

          平行且等于,

           又∵E為BC的中點(diǎn),四邊形為正方形,

          平行且等于,

          ∴四邊形為平行四邊形,          ………3分

          ,又平面,平面

          因此,平面.                ………5分

          法2:取AD的中點(diǎn)M,連接EM和FM,

          ∵F、E為PD和BC中點(diǎn),

          ,

          ∴平面,           ………3分

          平面

          因此,平面.              ………5分

          解(Ⅱ)【理科】:連接,連接并延長(zhǎng),交延長(zhǎng)線(xiàn)于一點(diǎn)

          連接,則為平面和平面的交線(xiàn),

          ,           ………7分

          平面,∴,

          又∵

          平面,

          在等腰直角中,

          平面,

          ∴平面平面.           ………10分

          又平面平面

          平面

          平面,∴為直線(xiàn)與平面所成的角.

          設(shè),則,,

          中,,

          因此,直線(xiàn)與平面所成的角.….………………12分

             (Ⅱ)【文科】

              承接法2,,又,

          ,                         

          平面,

          ∴平面平面.                ………7 分

          平面

          為直線(xiàn)與平面所成的角.  ………9 分

          中,

          =.                   ………12分

          21.(本小題滿(mǎn)分12分)

          【理科】解:(I)設(shè)雙曲線(xiàn)C的焦點(diǎn)為

          由已知,

          ,         ……………2分

          設(shè)雙曲線(xiàn)的漸近線(xiàn)方程為

          依題意,,解得

          ∴雙曲線(xiàn)的兩條漸近線(xiàn)方程為

          故雙曲線(xiàn)的實(shí)半軸長(zhǎng)與虛半軸長(zhǎng)相等,設(shè)為,則,得,

          ∴雙曲線(xiàn)C的方程為             ……………6分.

          (II)由,

          直線(xiàn)與雙曲線(xiàn)左支交于兩點(diǎn),

          因此 ………………..9分

          中點(diǎn)為

          ∴直線(xiàn)的方程為, 

          x=0,得,

            ∴ 

          ∴故的取值范圍是.  ………………12分.

             【文科】解:(Ⅰ)由已知

          于是……………..6分.

             (Ⅱ)

           

          恒成立,

          恒成立.      ……………….8分.

          設(shè),則

          上是增函數(shù),在上是減函數(shù),

          從而處取得極大值所以的最大值是6,故.………………12分

           

           

          22.(本小題滿(mǎn)分12分)

             【理科】解:(Ⅰ) ……………2分

          當(dāng)為增函數(shù);

          當(dāng)為減函數(shù),

          可知有極大值為…………………………..4分

          (Ⅱ)欲使上恒成立,只需上恒成立,

          設(shè)

          由(Ⅰ)知,,

          ……………………8分

          (Ⅲ),由上可知上單調(diào)遞增,

            ①,

           同理  ②…………………………..10分

          兩式相加得

              ……………………………………12分

          【文科】見(jiàn)理科21題答案.

           

           

           

           [y1]Y cy


          同步練習(xí)冊(cè)答案