題目列表(包括答案和解析)
在復(fù)平面內(nèi), 是原點(diǎn),向量
對應(yīng)的復(fù)數(shù)是
,
=2+i。
(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對稱點(diǎn)為點(diǎn)B,求向量對應(yīng)的復(fù)數(shù)
和
;
(Ⅱ)復(fù)數(shù),
對應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個圓上?并證明你的結(jié)論。
【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二問中,由題意得,=(2,1)
∴
同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點(diǎn)在同一個圓上。 2分
證明:由題意得,=(2,1)
∴
同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上
設(shè)A是由m×n個實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,
所以
(2) 不妨設(shè).由題意得
.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以
,
于是,
,
所以,當(dāng)
,且
時,
取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表如下,
|
|
… |
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且。
由得定義知,
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">
所以
所以,
對數(shù)表:
1 |
1 |
… |
1 |
|
… |
|
|
|
… |
|
-1 |
… |
-1 |
則且
,
綜上,對于所有的,
的最大值為
π |
3 |
若函數(shù)在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)
的取值范圍.
【解析】第一問中,利用定義,判定由題意得,由
,所以
第二問中, 由題意得方程有兩實(shí)根
設(shè)所以關(guān)于m的方程
在
有兩實(shí)根,
即函數(shù)與函數(shù)
的圖像在
上有兩個不同交點(diǎn),從而得到t的范圍。
解(I)由題意得,由
,所以
(6分)
(II)由題意得方程有兩實(shí)根
設(shè)所以關(guān)于m的方程
在
有兩實(shí)根,
即函數(shù)與函數(shù)
的圖像在
上有兩個不同交點(diǎn)。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com