日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 4.已知函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),f(X)=log2x的反函數(shù)為f-1(x),等比數(shù)列{an}的公比為2,若f-1(a2)•f-1(a4)=210,則2f(a1)+f(a2)+…+f(a2009=(  )
          A、21004×2008B、21005×2009C、21005×2008D、21004×2009

          查看答案和解析>>

          已知函數(shù),f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
          π2
          )
          的最大值為3,f(x)的圖象的相鄰兩對稱軸間的距離為2,在y軸上的截距為2.
          (I)求函數(shù)f(x)的解析式;
          (Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          已知函數(shù),f(x)=x,g(x)=
          3
          8
          x2+lnx+2

          (Ⅰ) 求函數(shù)F(x)=g(x)-2•f(x)的極大值點與極小值點;
          (Ⅱ) 若函數(shù)F(x)=g(x)-2•f(x)在[et,+∞)(t∈Z)上有零點,求t的最大值(e為自然對數(shù)的底數(shù));
          (Ⅲ) 設(shè)bn=f(n)
          1
          f(n+1)
          (n∈N*),試問數(shù)列{bn}中是否存在相等的兩項?若存在,求出所有相等的兩項;若不存在,請說明理由.

          查看答案和解析>>

          已知函數(shù),f(x)=
          0(x>0)
          -π(x=0)
          x
          2
          3
          +1(x<0)
          ,則復(fù)合函數(shù)f{f[f(-1)]}=(  )
          A、x2+1
          B、π2+1
          C、-π
          D、0

          查看答案和解析>>

          已知函數(shù),f(x)=
          log3x   x>0
          2-x       x≤0
          ,若f(f(-3))∈[k,k+1),k∈Z,則k=
           
          ,當(dāng)f(x)=1時,x=
           

          查看答案和解析>>

          一、選擇題(每小題5分,共50分)

          二、填空題(每小題4分,共28分)

          三、解答題

          18.解:(Ⅰ)由已有

                                              (4分)

           

                                                      (6分)

           

          (Ⅱ)由(1)                                 (8分)

          所以              (10分)

                                                                (12分)

                                            (14分)

           

          19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達(dá)標(biāo)的概率           (4分)

          (Ⅱ)可取的值是

                                                        (6分)

                                                      (8分)

                                                        (10分)

          的分布列為

          3

          4

          5

                                                                                (12分)

          所以的數(shù)學(xué)期望為                   (14分)

           

          20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

          ∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

           

          (Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

          建立如圖所示空間直角坐標(biāo)系,則

          A(0,,0,0),P(0,0,),C(,0),D(,0)

          ,                  (6分)

          易求為平面PAC的一個法向量.

          為平面PDC的一個法向量                                  (9分)

          ∴cos

          故二面角D-PC-A的正切值為2.  (11分)

          (Ⅲ)設(shè),則

             ,

          解得點,即   (13分)

          (不合題意舍去)或

          所以當(dāng)的中點時,直線與平面所成角的正弦值為   (15分)

           

          21.解:(Ⅰ)設(shè)直線的方程為:

          ,所以的方程為                     (4分)

          點的坐標(biāo)為.

          可求得拋物線的標(biāo)準(zhǔn)方程為.                                       (6分)

          (Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得    (8分)     

          設(shè)

          設(shè),則

                                                (11分)

          當(dāng)時上式是一個與無關(guān)的常數(shù).

          所以存在定點,相應(yīng)的常數(shù)是.                                     (14分)

           

          22.解:(Ⅰ)當(dāng)               (2分)

          上遞增,在上遞減

          所以在0和2處分別達(dá)到極大和極小,由已知有

          ,因而的取值范圍是.                                   (4分)

          (Ⅱ)當(dāng)時,

            1. 市一次模理數(shù)參答―3(共4頁)

                                                      (7分)

              ,

              上遞減,在上遞增.

              從而上遞增

              因此                           (10分)

              (Ⅲ)假設(shè),即=

              ,

                                                   (12分)

              ,(x)=0的兩根可得,

              從而有

              ≥2,這與<2矛盾.                                

              故直線與直線不可能垂直.                                               (15分)

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>