日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [點評]本題主要考查.不等式恒成立的條件.由于給出的是不完全提干.必須結(jié)合選擇支.才能得出正確的結(jié)論.運用公式一定要注意公式成立的條件,如果.如果a,b是正數(shù).那么 [例2] 某生物生長過程中.在三個連續(xù)時段內(nèi)的增長量都相等.在各時段內(nèi)平均增長速度分別為v1.v2,v3,該生物在所討論的整個時段內(nèi)的平均增長速度為 查看更多

           

          題目列表(包括答案和解析)

          過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.

          (I)試證明兩點的縱坐標(biāo)之積為定值;

          (II)若點是定直線上的任一點,試探索三條直線的斜率之間的關(guān)系,并給出證明.

          【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

          (1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得 

           (2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之

          設(shè)點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

            

          KAN+KBN=+

          本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

           

          查看答案和解析>>

          如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,

          (I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?

          (II)當(dāng)AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

          (Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

          【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

          (I)由SAMPN > 32 得 > 32 ,

          ∵x >2,∴,即(3x-8)(x-8)> 0

          ∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

          第二問,  

          當(dāng)且僅當(dāng)

          (3)令

          ∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

          ∴當(dāng)x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

           

          查看答案和解析>>

          在△ABC中,為三個內(nèi)角為三條邊,

          (I)判斷△ABC的形狀;

          (II)若,求的取值范圍.

          【解析】本題主要考查正余弦定理及向量運算

          第一問利用正弦定理可知,邊化為角得到

          所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。

          第二問中,

          得到。

          (1)解:由及正弦定理有:

          ∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,則A=C,∴是等腰三角形。

          (2)

           

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

          故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng)

          從而,

          所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.

           

          查看答案和解析>>

          已知函數(shù)=.

          (Ⅰ)當(dāng)時,求不等式 ≥3的解集;

          (Ⅱ) 若的解集包含,求的取值范圍.

          【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.

          【解析】(Ⅰ)當(dāng)時,=,

          當(dāng)≤2時,由≥3得,解得≤1;

          當(dāng)2<<3時,≥3,無解;

          當(dāng)≥3時,由≥3得≥3,解得≥8,

          ≥3的解集為{|≤1或≥8};

          (Ⅱ) ,

          當(dāng)∈[1,2]時,==2,

          ,有條件得,即,

          故滿足條件的的取值范圍為[-3,0]

           

          查看答案和解析>>


          同步練習(xí)冊答案