日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)若a=1.求征:(n∈N*且n≥2) 查看更多

           

          題目列表(包括答案和解析)

          (2012•徐州模擬)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
          若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.
          B.選修4-2:矩陣與變換
          已知矩陣M=
          21
          34

          (1)求矩陣M的逆矩陣;
          (2)求矩陣M的特征值及特征向量;
          C.選修4-2:矩陣與變換
          在平面直角坐標(biāo)系x0y中,求圓C的參數(shù)方程為
          x=-1+rcosθ
          y=rsinθ
          為參數(shù)r>0),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
          π
          4
          )=2
          2
          .若直線l與圓C相切,求r的值.
          D.選修4-5:不等式選講
          已知實(shí)數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
          4
          3

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1+,∞上為增函數(shù).  

              (1)求正實(shí)數(shù)a的取值范圍.

              (2)若a=1,求征:(n∈N*且n≥2)

          查看答案和解析>>

          若函數(shù)fx)=在[1,+∞上為增函數(shù).
          (Ⅰ)求正實(shí)數(shù)a的取值范圍.
          (Ⅱ)若a=1,求征:n∈N*且n ≥ 2 )

          查看答案和解析>>

          設(shè)函數(shù)f(x)=在[1+,∞上為增函數(shù).  
          (1)求正實(shí)數(shù)a的取值范圍.
          (2)若a=1,求征:(n∈N*且n≥2)

          查看答案和解析>>

          若函數(shù)f(x)=在[1,+∞)上為增函數(shù).
          (Ⅰ)求正實(shí)數(shù)a的取值范圍.
          (Ⅱ)若a=1,求征:( n∈N*且n≥2 )

          查看答案和解析>>

          一、選擇題(60分)

          BCCA    BDAB    BAAA

          二、填空題(16分)

          13、

          14、0

          15、1

          16、 

          三、解答題(74分)

          17、解(1),

               ∴遞增區(qū)間為----------------------6分

            (2)

              而

                故    --------------- 12分

          18、解:(1)3個(gè)旅游團(tuán)選擇3條不同線路的概率為:P1=…………3分

                 (2)恰有兩條線路沒有被選擇的概率為:P2=……6分

                 (3)設(shè)選擇甲線路旅游團(tuán)數(shù)為ξ,則ξ=0,1,2,3

                 P(ξ=0)=       Pξ=1)=    

                 Pξ=2)=      Pξ=3)=

          ξ

          0

          1

          2

          3

                                  

                ∴ξ的分布列為:

                

           

           

                ∴期望Eξ=0×+1×+2×+3×=………………12分

          19、

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          (1)過O作OF⊥BC于F,連接O1F,

          ∵OO1⊥面AC,∴BC⊥O1F,

          ∴∠O1FO是二面角O1-BC-D的平面角,

          ∵OB=2,∠OBF=60°,∴OF=.

          在Rt△O1OF在,tan∠O1FO=

          ∴∠O1FO=60° 即二面角O1―BC―D為60°

          (2)在△O1AC中,OE是△O1AC的中位線,∴OE∥O1C

          ∴OE∥O1BC,∵BC⊥面O1OF,∴面O1BC⊥面O1OF,交線O1F.

             過O作OH⊥O1F于H,則OH是點(diǎn)O到面O1BC的距離,

            1. 解法二:(1)∵OO1⊥平面AC,

              ∴OO1⊥OA,OO1⊥OB,又OA⊥OB,

              建立如圖所示的空間直角坐標(biāo)系(如圖)

              ∵底面ABCD是邊長為4,∠DAB=60°的菱形,

              ∴OA=2,OB=2,

              則A(2,0,0),B(0,2,0),C(-2,0,0),O1(0,0,3)

              設(shè)平面O1BC的法向量為=(x,y,z),

              ,,

              ,則z=2,則x=-,y=3,

              =(-,3,2),而平面AC的法向量=(0,0,3)

              ∴cos<,>=,

              設(shè)O1-BC-D的平面角為α, ∴cosα=∴α=60°.

              故二面角O1-BC-D為60°.                

              (2)設(shè)點(diǎn)E到平面O1BC的距離為d,

               ∵E是O1A的中點(diǎn),∴=(-,0,),

              則d=∴點(diǎn)E到面O1BC的距離等于。

              20、解:(1)點(diǎn)都在斜率為6的同一條直線上,

              ,即,

              于是數(shù)列是等差數(shù)列,故.………………3分

              ,,又共線,

                   …………4分

                        

                             .    ………6分

              當(dāng)n=1時(shí),上式也成立.

              所以an.  ……………7分

              (2)把代入上式,

              *   12<a≤15,,

              *   當(dāng)n=4時(shí),取最小值,* 最小值為a4=18-2a.   …………12分

              21、: (1) 由題意設(shè)雙曲線方程為,把(1,)代入得(*)

              的焦點(diǎn)是(,0),故雙曲線的(2分)與(*)

              聯(lián)立,消去可得,.

              ,(不合題意舍去)………(3分)

              于是,∴ 雙曲線方程為………(4分)

              (2) 由消去(*),當(dāng)

              )時(shí),與C有兩個(gè)交點(diǎn)A、B    ………(5分)

              ① 設(shè)A(,),B(,),因,故………(6分)

              ,由(*)知,,代入可得

              ………(7分)

               化簡得

              ,檢驗(yàn)符合條件,故當(dāng)時(shí),………(8分)

              ② 若存在實(shí)數(shù)滿足條件,則必須………(10分)

               由(2)、(3)得………(4)

              代入(4)得                      ………(11分)

              這與(1)的矛盾,故不存在實(shí)數(shù)滿足條件.          ………(12分)

              22、:(1)由已知: = ………………………2分

                 依題意得:≥0對(duì)x∈[1,+∞恒成立………………4分

                 ∴ax-1≥0對(duì)x∈[1,+∞恒成立    ∴a-1≥0即:a≥1……5分

                (2)∵a=1   ∴由(1)知:fx)=在[1,+∞上為增函數(shù),

                   ∴n≥2時(shí):f)=  

                 即:…7分  

                     ∴……………………9分

              設(shè)gx)=lnxx  x∈[1,+∞, 則對(duì)恒成立,

              gx)在[1+∞為減函數(shù)…………12分

              ∴n≥2時(shí):g()=ln<g(1)=-1<0  即:ln<=1+(n≥2)

              綜上所證:nN*且≥2)成立. ……14分