日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等差數(shù)列滿足,又?jǐn)?shù)列滿足+-+.其中是首項為1.公比為的等比數(shù)列的前項和. 查看更多

           

          題目列表(包括答案和解析)

          (14分)已知等差數(shù)列滿足;又?jǐn)?shù)列滿足+…+,其中是首項為1,公比為的等比數(shù)列的前項和。

             (I)求的表達(dá)式;

             (Ⅱ)若,試問數(shù)列中是否存在整數(shù),使得對任意的正整數(shù)都有成立?并證明你的結(jié)論。

          查看答案和解析>>

          已知等差數(shù)列{an}的首項為a,公差為b;等比數(shù)列{bn}的首項為b,公比為a,其中a,b∈N+,
          且a1<b1<a2<b2<a3
          (1)求a的值;
          (2)若對于任意n∈N+,總存在m∈N+,使am+3=bn,求b的值;
          (3)在(2)中,記{cn}是所有{an}中滿足am+3=bn,m∈N+的項從小到大依次組成的數(shù)列,又記Sn為{cn}的前n項和,tn和{an}的前n項和,求證:Sn≥Tn(n∈N).

          查看答案和解析>>

          已知等差數(shù)列{an}滿足a3=5,且a5-2a2=3.又?jǐn)?shù)列{bn}中,b1=3且3bn-bn+1=0(n=1,2,3,…).
          (I) 求數(shù)列{an},{bn}的通項公式;
          (II)若ai=bj,則稱ai(或bj)是{an},{bn}的公共項.
          ①求出數(shù)列{an},{bn}的前4個公共項;
          ②從數(shù)列{an}的前100項中將數(shù)列{an}與{bn}的公共項去掉后,求剩下所有項的和.

          查看答案和解析>>

          已知等差數(shù)列{an}滿足a3=5,a5-2a2=3,又?jǐn)?shù)列{bn}中,b1=3且3bn-bn+1=0(n∈N*)
          (I)求數(shù)列{an},{bn}的通項公式;
          (II)若數(shù)列{an},{bn}的前n項和分別是Sn,Tn,且cn=
          Sn(2Tn+3)
          n
          .求數(shù)列{cn}的前n項和Mn;
          (Ⅲ)若Mn>9logm
          3
          4
          (m>0,且m≠1)
          對一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          已知等差數(shù)列的首項為a,公差為b;等比數(shù)列的首項為b,公比為a,其中a,,且

            (1)求a的值;

           。2)若對于任意,總存在,使,求b的值;

           。3)在(2)中,記是所有中滿足的項從小到大依次組成的數(shù)列,又記的前n項和,的前n項和,求證:

          查看答案和解析>>

          一、選擇題:(每小題5分,共50分)

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          B

          D

          B

          A

          C

          C

          C

          A

          A

          B

          二、填空題:(每小題4分,共24分)

          11.     12.4       13.      14.     15.4   16.

          三、解答題:(共76分,以下各題為累計得分,其他解答請相應(yīng)給分)

          17.解:(I)

                    

                  由,得。

                  又當(dāng),得

                 

                 (Ⅱ)當(dāng)

                  即時函數(shù)遞增。

                  故的單調(diào)增區(qū)間為

          18.解:(I)各取1個球的結(jié)果有(紅,紅1)(紅,紅2)(紅,白1)(紅,白2)(紅,黑)

          (白,紅2)(白,紅2)(白,白1)(白,白2)(白,黑)(白,紅1)(白,紅2

          (白,白1)(白,白2)(白,黑)(黑1,紅1)(黑1,紅2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,紅1)(黑2,紅2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,紅1

          (黑3,紅2)(黑3,白1)(黑3,白2)(黑3,黑)

          等30種情況

          其中恰有1白1黑有(白,黑)…(黑3,白2)8種情況,

          故1白1黑的概率為

             (Ⅱ)2紅有2種,2白有4種,2黑有3種,

          故兩球顏色相同的概率為

             (Ⅲ)1紅有1×3+2×5=13(種),2紅有2種,

          故至少有1個紅球的概率為

          19.解:(I)側(cè)視圖   (高4,底2

                 

             (Ⅱ)證明,由面ABC得AC,又由俯視圖知ABAC,,

          面PAB

          又AC面PAC,面PAC面PAB

             (Ⅲ)面ABC,為直線PC與底面ABC所成的角

          中,PA=4,AC=,,

          20.解:(I)由題意設(shè)C的方程為,得。

             

              設(shè)直線的方程為,由

              ②代入①化簡整理得  

              因直線與拋物線C相交于不同的兩點(diǎn),

              故

              即,解得時僅交一點(diǎn),

             (Ⅱ)設(shè),由由(I)知

             

             

             

          21.解:(I)   由

          于是

          切線方程為,即

             (Ⅱ)令,解得

              ①當(dāng)時,即時,在內(nèi),,于是在[1,4]內(nèi)為增函數(shù)。從而

              ②當(dāng),即,在內(nèi),,于是在[1,4]內(nèi)為減函數(shù),從而

              ③當(dāng)時,內(nèi)遞減,在內(nèi)遞增,故在[1,4]上的最大值為的較大者。

              由,得,故當(dāng)時,

              當(dāng)時,

          22.解:(I)設(shè)的首項為,公差為d,于是由

                  解得       

                 (Ⅱ)

                  由  ①

                  得     ②

                  ①―②得   即

                  當(dāng)時,,當(dāng)時,

                 

                  于是

                  設(shè)存在正整數(shù),使對恒成立

                  當(dāng)時,,即

                  當(dāng)時,

                 

                  當(dāng)時,當(dāng)時,,當(dāng)時,

                  存在正整數(shù)或8,對于任意正整數(shù)都有成立。

          www.ks5u.com

           

           


          同步練習(xí)冊答案