日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以即對恒成立. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

          故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),

          從而

          所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

           

          查看答案和解析>>

          已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)設(shè),若對任意,,不等式 恒成立,求實數(shù)的取值范圍.

          【解析】第一問利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

          第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

          (II)若對任意不等式恒成立,

          問題等價于,                   .........5分

          由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,

          故也是最小值點,所以;            ............6分

          當(dāng)b<1時,;

          當(dāng)時,;

          當(dāng)b>2時,;             ............8分

          問題等價于 ........11分

          解得b<1 或 或    即,所以實數(shù)b的取值范圍是 

           

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點  處的的切線方程;

          (Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。

          第一問中,利用當(dāng)時,

          因為切點為(), 則,                 

          所以在點()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當(dāng)時,

          ,                                  

          因為切點為(), 則,                  

          所以在點()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因為,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當(dāng)時,上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當(dāng)時,令,對稱軸,

          上單調(diào)遞增,又    

          ① 當(dāng),即時,上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當(dāng)時,, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項公式

          (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于,

          當(dāng)時,;當(dāng)時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          當(dāng)時,,成立.

          假設(shè)當(dāng)時,不等式成立,

          當(dāng)時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          函數(shù))滿足:,且對任意實數(shù)x均有0成立

          (1)求實數(shù)的值;

          (2)當(dāng)時,求函數(shù)的最大值.

          【解析】(1) 恒成立.

          (2)

               對稱軸,由于開口方向向上,所以求最大值時對稱軸要與區(qū)間中間進行比較討論即可.

           

          查看答案和解析>>


          同步練習(xí)冊答案