日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∴側(cè)面. 連結(jié).在中.由AE=DE.得. 查看更多

           

          題目列表(包括答案和解析)

          如圖,在正四棱錐中,

          (1)求該正四棱錐的體積;

          (2)設(shè)為側(cè)棱的中點(diǎn),求異面直線

          所成角的大。

          【解析】第一問利用設(shè)為底面正方形中心,則為該正四棱錐的高由已知,可求得,

          所以,

          第二問設(shè)中點(diǎn),連結(jié)、

          可求得,,

          中,由余弦定理,得

          所以,

           

          查看答案和解析>>

          已知中,,.設(shè),記.

          (1)   求的解析式及定義域;

          (2)設(shè),是否存在實(shí)數(shù),使函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image010.png">?若存在,求出的值;若不存在,請說明理由.

          【解析】第一問利用(1)如圖,在中,由,,

          可得,

          又AC=2,故由正弦定理得

           

          (2)中

          可得.顯然,,則

          1當(dāng)m>0的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">m+1=3/2,n=1/2

          2當(dāng)m<0,不滿足的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">;

          因而存在實(shí)數(shù)m=1/2的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">.

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          在一個(gè)列聯(lián)表中,由其數(shù)據(jù)計(jì)算得,則其兩個(gè)變量間有關(guān)系的可能性為 (   )

          A.99%               B.95%             C.90%             D.無關(guān)系

          查看答案和解析>>

          在一個(gè)2×2列聯(lián)系表中,由其數(shù)據(jù)計(jì)算得x=13.01,則兩個(gè)變量間有關(guān)系的可能性為(    )

          A.99%        B.95%          C.90%          D.無關(guān)系

           

          查看答案和解析>>


          同步練習(xí)冊答案