日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由于l平面PCD.且平面PCD平面ABCD=CD, 所以∥CD. 同理可得l∥AB, 所以AB∥CD. 這與AB和CD是直角梯形ABCD的兩腰相矛盾,故假設(shè)錯誤.所以直線l與平面ABCD不平行. 因為梯形ABCD中AD∥BC, 查看更多

           

          題目列表(包括答案和解析)

          已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中點.
          (Ⅰ)證明:面PAD⊥面PCD;
          (Ⅱ)求平面AMC與平面ABC夾角的余弦值.

          查看答案和解析>>

          精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=90°,側(cè)面PAD⊥底面ABCD,∠PAD=90°.若AB=BC=
          12
          AD

          (Ⅰ)求證:CD⊥平面PAC;
          (Ⅱ)設(shè)側(cè)棱PA的中點是E,求證:BE∥平面PCD.

          查看答案和解析>>

          精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=
          90°,側(cè)面PAD⊥底面ABCD.若PA=AB=BC=
          12
          AD.
          (Ⅰ)求證:CD⊥平面PAC;
          (Ⅱ)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明,若不存在,請說明理由;
          (Ⅲ)求二面角A-PD-C的余弦值.

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
          1
          2
          AD.
          (1)求證:平面PCD⊥平面PAC;
          (2)設(shè)E是棱PD上一點,且PE=
          1
          3
          PD,求異面直線AE與PB所成的角.

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=
          12
          ,AD=1.
          (I)求證:CD⊥平面PAC
          (II)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置,并證明,若不存在,請說明理由.

          查看答案和解析>>


          同步練習冊答案