日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3).提示:這三道題是遞推數(shù)列的基本類型:它們都可以通過特定的方法轉(zhuǎn)換為等差.等比數(shù)列的問題來解決. 查看更多

           

          題目列表(包括答案和解析)

          定義:若數(shù)列{An}滿足An+1=
          A
          2
          n
          則稱數(shù)列{An}為“平方遞推數(shù)列”,已知數(shù)列{an}中,a1=2,點{an,an+1}在函數(shù)f(x)=2x2+2x的圖象上,其中n的正整數(shù).
          (1)證明數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列;
          (2)設(shè)(1)中“平方遞推數(shù)列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項及Tn關(guān)于n的表達(dá)式;
          (3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項和Sn,并求使Sn>2008的n的最小值.

          查看答案和解析>>

          (2012•石景山區(qū)一模)定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
          (1)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
          (2)設(shè)(1)中“平方遞推數(shù)列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項及Tn關(guān)于n的表達(dá)式.
          (3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項之和Sn,并求使Sn>2011的n的最小值.

          查看答案和解析>>

          若數(shù)列滿足,則稱數(shù)列平方遞推數(shù)列.已知數(shù)列,,點在函數(shù)的圖象上,其中為正整數(shù).

          1)證明數(shù)列平方遞推數(shù)列,且數(shù)列為等比數(shù)列;

          2設(shè)(1)中平方遞推數(shù)列的前項積為,

          ,求;

          3)在(2)的條件下,記,求數(shù)列的前項和,并求使的最小值

           

          查看答案和解析>>

          定義:若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”。已知數(shù)列中,,點在函數(shù)的圖像上,其中為正整數(shù)。

            (1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列。

            (2)設(shè)(1)中“平方遞推數(shù)列”的前項之積為,即,求數(shù)列的通項及關(guān)于的表達(dá)式。

          (3)記,求數(shù)列的前項之和,并求使的最小值。

          查看答案和解析>>

          定義:若數(shù)列{An}滿足則稱數(shù)列{An}為“平方遞推數(shù)列”,已知數(shù)列{an}中,a1=2,點{an,an+1}在函數(shù)f(x)=2x2+2x的圖象上,其中n的正整數(shù).
          (1)證明數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列;
          (2)設(shè)(1)中“平方遞推數(shù)列”的前n項之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項及Tn關(guān)于n的表達(dá)式;
          (3)記,求數(shù)列{bn}的前n項和Sn,并求使Sn>2008的n的最小值.

          查看答案和解析>>


          同步練習(xí)冊答案