日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ③若 ④若其中正確命題的序號(hào)是 . (把正確命題的序號(hào)都填上) 查看更多

           

          題目列表(包括答案和解析)

          下列命題:
          ①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
          π
          4
          ,
          π
          2
          ),則f(sin θ)>f(cos θ);
          ②若銳角α,β滿足cos α>sin β,則α+β<
          π
          2
          ;
          ③若f(x)=2cos2
          x
          2
          -1,則f(x+π)=f(x)對(duì)x∈R恒成立;
          ④要得到函數(shù)y=sin(
          x
          2
          -
          π
          4
          )
          的圖象,只需將y=sin
          x
          2
          的圖象向右平移
          π
          4
          個(gè)單位,
          其中真命題是
           
          (把你認(rèn)為所有正確的命題的序號(hào)都填上).

          查看答案和解析>>

          下列命題:
          ①若
          a
          b
          =0
          ,則
          a
          =
          0
          b
          =
          0
          ;②若|
          a
          |=|
          b
          |
          ,則
          a
          =
          b
          a
          =-
          b
          ;③|
          a
          -
          b
          |2=|
          a
          |2-2|
          a
          ||
          b
          |+|
          b
          |2
          ;④(
          a
          -
          b
          )•(
          a
          +
          b
          )=|
          a
          |2-|
          b
          |2

          其中,正確命題的序號(hào)是
           
          .(把所有正確的序號(hào)都填上)

          查看答案和解析>>

          下列命題:
          ①函數(shù)y=
          x+3,(x≤1)
          -x+5,(x>1)
          的最大值是4
          ②函數(shù)y=
          1-x
          +
          x
          的定義域?yàn)閧x|x≥1或x≤0}
          ③設(shè)a=0.7 
          1
          2
          ,b=0.8 
          1
          2
          ,c=log30.7,則c<a<b
          ④集合A={x|0<log2x<1},B={x|x<a}若A⊆B,則a的范圍是a≥2
          其中正確的有
          ①③④
          ①③④
          (請(qǐng)把所有滿足題意的序號(hào)都填在橫線上)

          查看答案和解析>>

          給出命題:
          ①若函數(shù)y=f(2x-1)為偶函數(shù),則y=f(2x)的圖象關(guān)于x=
          1
          2
          對(duì)稱;
          ②把函數(shù)y=3sin(2x+
          π
          3
          )
          的圖象向右平移
          π
          6
          得到y(tǒng)=3sin2x的圖象
          ③函數(shù)y=2cos(2x+
          π
          3
          )
          的圖象關(guān)于點(diǎn)(
          π
          12
          ,0)
          對(duì)稱;
          ④函數(shù)y=sin|x|是周期函數(shù),且周期為2π;
          ⑤△ABC中,若sinA,sinB,sinC成等差數(shù)列,則B∈(0,
          π
          3
          ]

          其中正確命題所有的序號(hào)是
          ②③⑤
          ②③⑤

          查看答案和解析>>

          下列命題:
          成等比數(shù)列的充分不必要條件;
          ②若角滿足,則;
          ③若不等式的解集非空,則必有
          ④“”是指 “
          ⑤命題“存在,”的否定是“對(duì)任意的,”.
          其中正確的命題的序號(hào)是(把你認(rèn)為正確的命題的序號(hào)都填上).

          查看答案和解析>>

           

          一、選擇題

          A卷:BACDB    DCABD    BA

          B卷:BDACD    BDCAB    BA

          二、填空題

          13.15  

          14.210

          15.

          16.①④

          三、解答題:

          17.文 解:

             (Ⅰ)3人各自進(jìn)行1次實(shí)驗(yàn)都沒有成功的概率

          …………………………6分

             (Ⅱ)甲獨(dú)立進(jìn)行3次實(shí)驗(yàn)至少有兩次成功的概率

          …………………………12分

          17.理 解:(注:考試中計(jì)算此題可以使用分?jǐn)?shù),以下的解答用的是小數(shù))

             (Ⅰ)同文(Ⅰ)

             (Ⅱ)的概率分別為

          隨機(jī)變量的概率分布為

          0

          1

          2

          3

          P

          0.216

          0.432

          0.288

          0.064

          ………………8分

          的數(shù)學(xué)期望為E=0×0.216+1×0.432+2×0.288+3×0.064=1.2.…………10分

          (或利用E=np=3×0.4=1.2)

          的方差為

          D=(0-1.2)2×0.216+(1-1.2)2×0.432+(2-1.2)2×0.288+(3-1.2)2×0.064

          =0.72.…………………………12分

          (或利用D=npq=3×0.4×0.6=0.72)

          18.文 解:

             (Ⅰ)設(shè)數(shù)列

          所以……………………3分

          所以…………………………6分

             (Ⅱ)………………9分

          ………………12分

          18.理 解:

             (Ⅰ)

          …………4分

          所以,的最小正周期,最小值為-2.…………………………6分

             (Ⅱ)列表:

          x

          0

          2

          0

          -2

          0

           

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

           

           

           

           

           

           

           

           

           

           

           

          …………………12分

          (19?文)同18?理.

          (19?理)解:(Ⅰ)取A1A的中點(diǎn)P,連PM、PN,則PN//AD,

            1.  

               

               

               

               

               

               

               

               

               

                 (Ⅱ)由(Ⅰ)知,則就是所求二面角的平面角.………………………8分

                       顯然

              利用等面積法求得A1O=AO=在△A1OA中由余弦定理得

              cos∠A1OA=.

              所以二面角的大小為arccos……………………………………………12分

              (20?文)同19理.

              (20?理)(I)證明:當(dāng)q>0時(shí),由a1>0,知an>0,所以Sn>0;………………2分

              當(dāng)-1<q<0時(shí),因?yàn)閍1>0,1-q>0,1-qn>0,所以.

              綜上,當(dāng)q>-1且q≠0時(shí),Sn>0總成立.……………………5分

                 (II)解:an+1=anq,an+2=anq2,所以bn=an+1-kan+2=an(q-kq2).

                      Tn=b1+b2+…+bn=(a1+a2+…+an)(q-kq2)=Sn(q-kq2).……………………9分

                      依題意,由Tn>kSn,得Sn(q-kq2)>kSn.

                      ∵Sn>0,∴可得q-kq2>k,

              即k(1+q2)<q,k<.

              ∴k的取值范圍是. ……………………12分

              (21?文)解:f′(x)=3x2+4ax-b.………………………………2分

                       設(shè)f′(x)=0的二根為x1,x2,由已知得

                       x1=-1,x2≥2,………………………………………………4分

                       …………………………7分

                      解得

                      故a的取值范圍是…………………………………………12分

              (21?理)解:(I)設(shè)橢圓方程

                      由2c=4得c=2,又.

                      故a=3,b2=a2-c2=5,

                      ∴所求的橢圓方程.…………………………………………5分

                 (II)點(diǎn)F的坐標(biāo)為(0,2),設(shè)直線AB的方程為y=kx+2,A(x1,y1)、B(x2,y2).

              得(9+5k2)x2+20kx-25=0,………………………………8分

              顯然△>0成立,

              根據(jù)韋達(dá)定理得

              ,                       ①

              .                           ②

              ,

              ,代入①、②得

                                                   ③

                                                  ④

              由③、④得

               …………………………………………14分

              (22.文)同21理,其中3分、6分、8分、12分依次更改為5分、8分、10分、14分.

              (22.理)(1)證明:令

              原不等式…………………………2分

              ,

              單調(diào)遞增,,

              ………………………………………………5分

              ,

              單調(diào)遞增,,

               …………………………………………8分

              ………………………………9分

                 (Ⅱ)令,上式也成立

              將各式相加

              ……………11分

              ……………………………………………………………………14分