日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解]:(1)由于點在橢圓上. ------1分 查看更多

           

          題目列表(包括答案和解析)

          如圖,已知橢圓Γ:+=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|F1Q|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足=0,||≠0.
          (Ⅰ)求點M的軌跡C的方程;
          (Ⅱ)設不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數(shù)列,求△OAB面積的取值范圍;
          (Ⅲ)由(Ⅱ)求解的結果,試對橢圓Γ寫出類似的命題.(只需寫出類似的命題,不必說明理由)

          查看答案和解析>>

          已知點E、F的坐標分別是(-2,0)、(2,0),直線EP、FP相交于點P,且它們的斜率之積為-
          1
          4

          (1)求證:點P的軌跡在一個橢圓C上,并寫出橢圓C的方程;
          (2)設過原點O的直線AB交(1)中的橢圓C于點A、B,定點M的坐標為(1,
          1
          2
          )
          ,試求△MAB面積的最大值,并求此時直線AB的斜率kAB;
          (3)反思(2)題的解答,當△MAB的面積取得最大值時,探索(2)題的結論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關系.由此推廣到點M位置的一般情況或橢圓的一般情況(使第(2)題的結論成為推廣后的一個特例),試提出一個猜想或設計一個問題,嘗試研究解決.
          [說明:本小題將根據(jù)你所提出的猜想或問題的質量分層評分].

          查看答案和解析>>

          已知點E、F的坐標分別是(-2,0)、(2,0),直線EP、FP相交于點P,且它們的斜率之積為
          (1)求證:點P的軌跡在一個橢圓C上,并寫出橢圓C的方程;
          (2)設過原點O的直線AB交(1)中的橢圓C于點A、B,定點M的坐標為,試求△MAB面積的最大值,并求此時直線AB的斜率kAB;
          (3)反思(2)題的解答,當△MAB的面積取得最大值時,探索(2)題的結論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關系.由此推廣到點M位置的一般情況或橢圓的一般情況(使第(2)題的結論成為推廣后的一個特例),試提出一個猜想或設計一個問題,嘗試研究解決.
          [說明:本小題將根據(jù)你所提出的猜想或問題的質量分層評分].

          查看答案和解析>>

          已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

          【解析】第一問利用設橢圓的方程為,由題意得

          解得

          第二問若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為

          所以

          所以.解得。

          解:⑴設橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,

          所以

          所以

          ,

          因為,即,

          所以

          所以,解得

          因為A,B為不同的兩點,所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>

          設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設點P的坐標為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設點P的坐標為.

          由條件得消去并整理得  ②

          ,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設點P的坐標為.

          由P在橢圓上,有

          因為,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得

          所以.

           

          查看答案和解析>>


          同步練習冊答案