日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(Ⅰ)設(shè)橢圓W的方程為.由題意可知 查看更多

           

          題目列表(包括答案和解析)

          已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

          【解析】第一問利用設(shè)橢圓的方程為,由題意得

          解得

          第二問若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為

          所以

          所以

          ,

          因為,即

          所以

          所以,解得

          因為A,B為不同的兩點,所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>

          如圖,已知M(m,m2)、N(n,n2)是拋物線C:y=x2上兩個不同點,且m2+n2=1,m+n≠0,直線l是線段MN的垂直平分線.設(shè)橢圓E的方程為
          x2
          2
          +
          y2
          a
          =1(a>0,a≠2)

          (Ⅰ)當(dāng)M、N在拋物線C上移動時,求直線L斜率k的取值范圍;
          (Ⅱ)已知直線L與拋物線C交于A、B、兩個不同點,L與橢圓E交于P、Q兩個不同點,設(shè)AB中點為R,OP中點為S,若
          OR
          OS
          =0
          ,求橢圓E離心率的范圍.

          查看答案和解析>>

          已知函數(shù)f(x)=mx-2+
          2
          -1
          (m>0,m≠1)的圖象恒通過定點(a,b).設(shè)橢圓E的方程為
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0).
          (1)求橢圓E的方程.
          (2)若動點T(t,0)在橢圓E長軸上移動,點T關(guān)于直線y=-x+
          1
          t2+1
          的對稱點為S(m,n),求
          n
          m
          的取值范圍.

          查看答案和解析>>

          已知以動點P為圓心的圓與直線y=-
          1
          20
          相切,且與圓x2+(y-
          1
          4
          2=
          1
          25
          外切.
          (Ⅰ)求動P的軌跡C的方程;
          (Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點,且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
              (1)求直線L斜率k的取值范圍;
              (2)設(shè)橢圓E的方程為
          x2
          2
          +
          y2
          a
          =1(0<a<2).已知直線L與拋物線C交于A、B兩個不同點,L與橢圓E交于P、Q兩個不同點,設(shè)AB中點為R,PQ中點為S,若
          OR
          OS
          =0,求E離心率的范圍.

          查看答案和解析>>


          同步練習(xí)冊答案