日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2. (理)若數(shù)列( n)滿足.且=-. = A. B.1 C.2 D. 查看更多

           

          題目列表(包括答案和解析)

          若數(shù)列{an}的前n項和為Sn,且滿足等式an+2Sn=3.
          (1)能否在數(shù)列中找到按原來順序成等差數(shù)列的任意三項,說明理由;
          (2)能否從數(shù)列中依次抽取一個無限多項的等比數(shù)列,且使它的所有項和S滿足數(shù)學(xué)公式,如果這樣的數(shù)列存在,這樣的等比數(shù)列有多少個?

          查看答案和解析>>

          若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
          (1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L型數(shù)列?若是,寫出對應(yīng)p、q的值;若不是,說明理由.
          (2)已知L型數(shù)列{an}滿足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),證明:數(shù)列{an+1-2an}是等比數(shù)列,并進一步求出{an}的通項公式an

          查看答案和解析>>

          若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
          (1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L型數(shù)列?若是,寫出對應(yīng)p、q的值;若不是,說明理由.
          (2)已知L型數(shù)列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
          (3)請你提出一個關(guān)于L型數(shù)列的問題,并加以解決.(本小題將根據(jù)所提問題的普適性給予不同的分值,最高10分)

          查看答案和解析>>

          數(shù)列{an}的前n項和為Sn,若a1=2且Sn=Sn-1+2n(n≥2,n∈N*).
          (Ⅰ)求Sn;
          (Ⅱ)是否存在等比數(shù)列{bn}滿足b1=a1,b2=a3,b3=a9?若存在,則求出數(shù)列{bn}的通項公式;若不存在,則說明理由.

          查看答案和解析>>

          (理科)已知數(shù)列{an}的前n項和Sn滿足Sn=
          a
          a-1
          (an-1)(a為常數(shù)且a≠0,a≠1,n∈N*)

          (1)求數(shù)列{an}的通項公式;
          (2)記bn=
          2Sn
          an
          +1
          ,若數(shù)列{bn}為等比數(shù)列,求a的值;
          (3)在滿足(2)的條件下,記Cn=
          1
          1+an
          +
          1
          1-an+1
          ,設(shè)數(shù)列{Cn}的前n項和為Tn,求證:Tn>2n-
          1
          3

          查看答案和解析>>

          一、選擇題  B文(B)ACDB   CACB(文A)B    AD

          二、填空題  13.   14.1200     15. (理)3(文)1   16.2

          三、解答題

          17. 解:,且.

              

              ① ………………3分

                 ②

          又A為三角形的內(nèi)角,所以sinA= ………………6分

           ………………9分

           ………………12分

          18.解:由題意p,q中有且僅有一個為真,一個為假,…………2分

          由p真m>2,……5分

           q真<01<m<3, ……7分

          所以,若p假q真,則1<m≤2……9分

           若p真q假,則m≥3……11分

          綜上所述:m∈(1,2)∪[3,+∞].…………12分

           

          19.證明(1):過點D作

          ,垂足為H.連結(jié)HB、GH,

          所以

          ,且=

          所以

          由三垂線定理得…………(理、文)6分

          (2)(理)

          所以

          連結(jié)DG,則垂足G,所以…………9分

          垂足為M,連結(jié)DM,則為二面角D-BF-C的平面角

          所以,在中,

           .…………12分

          (注:也可用空間向量來解,步驟略)

          (文)

          又∵AD∥面BFC

          所以

          …………9分

          =0,得x=

          所以x=有最大值,其值為.…………12分

           

          20.解:(1)由已知條件分析可知,在甲、乙兩地分別投資5萬元的情況下欲獲利12.5萬元,須且必須兩地都不發(fā)生洪水.

          故所求的概率為P=(1-0.6)×(1-0.5)=0.2………………(理)5分(文)6分

          (2)設(shè)投資1萬元在甲地獲利萬元,則的可能取值為15萬元和-5萬元.

          又此地發(fā)生洪水的概率為0.6

          故投資1萬元在甲地獲利的期望為1.5×0.6+(-0.5)×0.4=0.7萬元.…………(理)7分

          同理在乙地獲利的期望為1×0.5+(-0.2)×0.5=0.4萬元. …………(理)8分

          設(shè)在甲、乙兩地的投資分別為x,y萬元,

          則平均獲利z=0.7x+0.4y萬元.……(理)9分

          (則獲得的利潤z=1.5x+y萬元.…………(文)7分)

          其中x,y滿足:

          如右圖,因為A點坐標為(6,4)  

          所以,在甲、乙兩地的投資分別為6、4萬元時,

          可平均獲利最大,

          其最大值為(理)5.8萬元、(文)13萬元. …………(理、文)12分

          (注:若不用線性規(guī)劃的格式求解,只要結(jié)果正確同樣給分)

           

          21.解:(1)設(shè)平移后的右焦點為P(x,y),

          易得已知橢圓的右焦點為F2(3,0), ………………1分

          (2)易知F(0,為曲線C上的焦點,又

          所以A,B,F三點共線………………5分

          設(shè)

           ………………12分

          (文)21.解:(1)當(dāng)n為偶數(shù)時,因為f(-x)=(-x)n+1=xn+1=f(x),即函數(shù)f(x)為偶函數(shù)

          所以其圖象關(guān)于y軸對稱………………2分

          當(dāng)n為奇數(shù)時,因為f(-x)=(-x)n+1=-xn+1,所以

          所以其圖象關(guān)于點(0,1)中心對稱. ………………4分

          (或:令g(x)=f(x)-1=xn,所以g(-x)=(-x)n=-xn=-g(x) ,即g(x)為奇函數(shù),

          所以g(x)的圖象關(guān)于原點對稱,故函數(shù)f(x)的圖象關(guān)于點(0,1)中心對稱.)………4分

          (2)=…………6分

          所以…………#

          當(dāng);…………8分

          當(dāng)時,#式兩邊同乘以x,得…*

          *式-#式可得,…………12分

          22.(理)解:(1)易得f(x)=+ 的定義域為[0,n]

          ,得x=------------1分

          所以,函數(shù)f(x)在(0,)上單調(diào)遞增,在(,n)單調(diào)遞減,

          所以=------------3分

          由于,所以-------------5分

          因為

          所以--------8分

          (2)令

          所以=------------10分

          ;

          所以

          -------------12分

          ,所以

          相除得,由,所以

           

          最大   -----------14分

           


          同步練習(xí)冊答案