日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又因?yàn)?所以.平面. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

          對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

          記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

          (1)   對(duì)如下數(shù)表A,求K(A)的值;

          1

          1

          -0.8

          0.1

          -0.3

          -1

           

          (2)設(shè)數(shù)表A∈S(2,3)形如

          1

          1

          c

          a

          b

          -1

           

          求K(A)的最大值;

          (3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。

          【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

          所以

          (2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以

          于是,,

              

          所以,當(dāng),且時(shí),取得最大值1。

          (3)對(duì)于給定的正整數(shù)t,任給數(shù)表如下,

          任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

          ,并且,因此,不妨設(shè),

          。

          得定義知,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

          所以

               

               

          所以,

          對(duì)數(shù)表

          1

          1

          1

          -1

          -1

           

          ,

          綜上,對(duì)于所有的,的最大值為

           

          查看答案和解析>>

          已知函數(shù),(),

          (1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值

          (2)當(dāng)時(shí),若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

          【解析】(1) 

          ∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線

          ,

          (2)令,當(dāng)時(shí),

          ,得

          時(shí),的情況如下:

          x

          +

          0

          -

          0

          +

           

           

          所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

          當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

          當(dāng),即時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

          當(dāng),即a>6時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞贈(zèng),在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">

          所以在區(qū)間上的最大值為。

           

          查看答案和解析>>

          函數(shù)有意義,需使高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,其定義域?yàn)?sub>高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,排除C,D,又因?yàn)?sub>高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,所以當(dāng)高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。時(shí)函數(shù)為減函數(shù),故選A. w.w.w.k.s.5.u.c.o.m    

          答案:A.

          【命題立意】:本題考查了函數(shù)的圖象以及函數(shù)的定義域、值域、單調(diào)性等性質(zhì).本題的難點(diǎn)在于給出的函數(shù)比較復(fù)雜,需要對(duì)其先變形,再在定義域內(nèi)對(duì)其進(jìn)行考察其余的性質(zhì).

          查看答案和解析>>

          如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

          (Ⅱ)若為側(cè)棱PB的中點(diǎn),求直線AE與底面所成角的正弦值.

          【解析】第一問中,利用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以第二問中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

           (Ⅰ) 證明:由用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以

          ………………………………………………6分

          (Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,

          因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

          又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

          ………………………………………10分

          又PO=1/2AC=,也所以有EH=1/2PO=,

          由(Ⅰ)已證平面PBC,所以,即,

          ,

          于是

          所以直線AE與底面ABC 所成角的正弦值為

           

          查看答案和解析>>

          在棱長(zhǎng)為的正方體中,是線段的中點(diǎn),.

          (1) 求證:^;

          (2) 求證://平面;

          (3) 求三棱錐的表面積.

          【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問中,利用,得到結(jié)論,第二問中,先判定為平行四邊形,然后,可知結(jié)論成立。

          第三問中,是邊長(zhǎng)為的正三角形,其面積為,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,

          所以是直角三角形,其面積為,

          同理的面積為, 面積為.  所以三棱錐的表面積為.

          解: (1)證明:根據(jù)正方體的性質(zhì),

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,

          所以,又,所以,,

          所以^.               ………………4分

          (2)證明:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,

          所以為平行四邊形,因此,

          由于是線段的中點(diǎn),所以,      …………6分

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">,平面,所以∥平面.   ……………8分

          (3)是邊長(zhǎng)為的正三角形,其面積為,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,

          所以是直角三角形,其面積為,

          同理的面積為,              ……………………10分

          面積為.          所以三棱錐的表面積為

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案