日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ).培訓(xùn)活動(dòng)隨機(jī)選出2名代表發(fā)言.設(shè)發(fā)言代表中使用人教版的女教師人數(shù)為.求隨機(jī)變量的分布列和數(shù)學(xué)期望, 查看更多

           

          題目列表(包括答案和解析)

          某市舉行的一次數(shù)學(xué)新課程骨干培訓(xùn),共邀請(qǐng)15名使用不同版本教材的教師,數(shù)據(jù)如下表所示:
          版本 人教A版 人教B版
          性別 男教師 女教師 男教師 女教師
          人數(shù) 6 3 4 2
          (Ⅰ)從這15名教師中隨機(jī)選出2名,則2人恰好是教不同版本的男教師的概率是多少?
          (Ⅱ)培訓(xùn)活動(dòng)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

          查看答案和解析>>

          (08年朝陽(yáng)區(qū)綜合練習(xí)一)(本小題滿分13分)

          某市舉行的一次數(shù)學(xué)新課程骨干培訓(xùn),共邀請(qǐng)15名使用不同版本教材的教師,數(shù)據(jù)如下表所示:

          版本

          人教A版

          人教B版

          性別

          男教師

          女教師

          男教師

          女教師

          人數(shù)

          6

          3

          4

          2

           

          (Ⅰ)從這15名教師中隨機(jī)選出2名,則2人恰好是教不同版本的男教師的概率是多少?

          (Ⅱ)培訓(xùn)活動(dòng)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          某市舉行的一次數(shù)學(xué)新課程骨干培訓(xùn),共邀請(qǐng)15名使用不同版本教材的教師,數(shù)據(jù)如下表所示:

          1.         版本

          2.         人教A版

          3.         人教B版

          4.         性別

          5.         男教師

          6.         女教師

          7.         男教師

          8.         女教師

          9.         人數(shù)

          10.     6

          11.     3

          12.     4

          13.     2

          (Ⅰ)從這15名教師中隨機(jī)選出2名,則2人恰好是教不同版本的男教師的概率是多少?

          (Ⅱ)培訓(xùn)活動(dòng)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          (08年?yáng)|北師大附中理)(12分)

           

              某市舉行的一次數(shù)學(xué)新課程骨干教師培訓(xùn),共邀請(qǐng)10名使用不同版本教材的教師,數(shù)據(jù)如下表所示:

           

          版本

          人教A版

          人教B版

          性別

          男教師

          女教師

          男教師

          女教師

          人數(shù)

          3

          2

          2

          3

          (Ⅰ)從這10名教師中隨機(jī)選出2名,則2人恰好是教不同版本的男教師的概率是多少?

          (Ⅱ)培訓(xùn)活動(dòng)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          某市舉行的一次數(shù)學(xué)新課程骨干培訓(xùn),共邀請(qǐng)15名使用不同版本教材的教師,數(shù)據(jù)如下表所示:

          (Ⅰ)從這15名教師中隨機(jī)選出2名,則2人恰好是教不同版本的男教師的概率是多少?

          (Ⅱ)培訓(xùn)活動(dòng)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          1、A  2,、B  3、 D  4,、B  5、 D  6、C   7、A  8、B  9、A  10、D

          11、(,1]   12、-或1      13、6p     14、2    15、11

          16解:解:(Ⅰ)

                     

          當(dāng),即時(shí),取得最大值.

          (Ⅱ)當(dāng),即時(shí),

          所以函數(shù)的單調(diào)遞增區(qū)間是

          17、解:(Ⅰ)從15名教師中隨機(jī)選出2名共種選法,   …………………………2分

          所以這2人恰好是教不同版本的男教師的概率是.  …………………5分

          (Ⅱ)由題意得

          ;  ;

          的分布列為

          0

          1

          2

           

           

          所以,數(shù)學(xué)期望

          18、解法一:(Ⅰ)證明:連接

          文本框:        

             

                                                

               。  ……………………3分

          ∥平面 …………………………5分

          (Ⅱ)解:在平面

          ……………………8分

          設(shè)。

          所以,二面角的大小為。 ………………12分

          19、(I)解:當(dāng)

            ①當(dāng), 方程化為

            ②當(dāng), 方程化為1+2x = 0, 解得,

            由①②得,

           (II)解:不妨設(shè),

           因?yàn)?sub>

            所以是單調(diào)遞函數(shù),    故上至多一個(gè)解,

           

          20、解:(Ⅰ)由知,點(diǎn)的軌跡是以為焦點(diǎn)的雙曲線右支,由,∴,故軌跡E的方程為…(3分)

          (Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l方程為,與雙曲線方程聯(lián)立消,設(shè)、,

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          (i)∵

          ……………………(7分)

              假設(shè)存在實(shí)數(shù),使得,

              故得對(duì)任意的恒成立,

              ∴,解得 ∴當(dāng)時(shí),.

              當(dāng)直線l的斜率不存在時(shí),由知結(jié)論也成立,

              綜上,存在,使得.

             (ii)∵,∴直線是雙曲線的右準(zhǔn)線,

              由雙曲線定義得:,

              方法一:∴

              ∵,∴,∴

              注意到直線的斜率不存在時(shí),,綜上,

              方法二:設(shè)直線的傾斜角為,由于直線

          與雙曲線右支有二個(gè)交點(diǎn),∴,過(guò)

          ,垂足為,則,

            1.     由,得故:

              21 解:(Ⅰ)

              當(dāng)時(shí),

              ,即是等比數(shù)列. ∴; 

              (Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

               則有

              ,解得,

              再將代入得成立, 所以.  

              (III)證明:由(Ⅱ)知,所以

              ,   由

              所以,   

              從而

              .