題目列表(包括答案和解析)
|
|
3 |
2 |
3 |
2 |
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點(diǎn)是過(guò)點(diǎn)
且法向量為
的直線
上的動(dòng)點(diǎn).當(dāng)
時(shí),設(shè)函數(shù)
的值域?yàn)榧?img width=21 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/18/333018.gif" >,不等式
的解集為集合
. 若
恒成立,求實(shí)數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時(shí),試寫出一個(gè)條件,使得函數(shù)
滿足“圖像關(guān)于點(diǎn)
對(duì)稱,且在
處
取得最小值”.(說(shuō)明:請(qǐng)寫出你的分析過(guò)程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過(guò)程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)
(1)a、b之間有什么關(guān)系?
(2)求A∩B所表示的圖形的面積.
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點(diǎn)是過(guò)點(diǎn)
且法向量為
的直線
上的動(dòng)點(diǎn).當(dāng)
時(shí),設(shè)函數(shù)
的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/89/5/a05qa.gif" style="vertical-align:middle;" />,不等式
的解集為集合
. 若
恒成立,求實(shí)數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時(shí),試寫出一個(gè)條件,使得函數(shù)
滿足“圖像關(guān)于點(diǎn)
對(duì)稱,且在
處
取得最小值”.(說(shuō)明:請(qǐng)寫出你的分析過(guò)程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過(guò)程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
D
C
D
B
C
A
C
B
D
B
11、2;12、;13、
;14、
;15、
;16、
17、解:(1)
, (6分)
∴的最小正周期為
. (8分)
(2)∵,∴
,
故. (12分)
18、解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.
①三次取球均出現(xiàn)最大數(shù)字為3的概率
②三取取球中有2次出現(xiàn)最大數(shù)字3的概率
③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率
∴. ……………………………………………………6分
(2)在時(shí), 利用(1)的原理可知:
,(
=1,2,3,4)
1
2
3
4
的概率分布為:
=1×+2×+3×+4× = .………………………………………………12分
19、解:(Ⅰ)作,垂足為
,連結(jié)
,由側(cè)面
底面
,得
底面
.
因?yàn)?sub>,所以
,
又,故
為等腰直角三角形,
,
由三垂線定理,得.
(Ⅱ)由(Ⅰ)知
,依題設(shè)
,
故,由
,
,
,得
,
.
的面積
.
連結(jié),得
的面積
設(shè)到平面
的距離為
,由于
,得
,
解得.
設(shè)與平面
所成角為
,則
.
所以,直線與平面
所成的我為
.
20、解:(I)由題意知,因此
,從而
.
又對(duì)求導(dǎo)得
.
由題意,因此
,解得
.
(II)由(I)知(
),令
,解得
.
當(dāng)時(shí),
,此時(shí)
為減函數(shù);
當(dāng)時(shí),
,此時(shí)
為增函數(shù).
因此的單調(diào)遞減區(qū)間為
,而
的單調(diào)遞增區(qū)間為
.
(III)由(II)知,在
處取得極小值
,此極小值也是最小值,要使
(
)恒成立,只需
.
即,從而
,
解得或
.
所以的取值范圍為
.
21、解:(Ⅰ)解法一:易知
所以,設(shè)
,則
因?yàn)?sub>,故當(dāng)
,即點(diǎn)
為橢圓短軸端點(diǎn)時(shí),
有最小值
當(dāng),即點(diǎn)
為橢圓長(zhǎng)軸端點(diǎn)時(shí),
有最大值
解法二:易知,所以
,設(shè)
,則
(以下同解法一)
(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線
,
聯(lián)立,消去
,整理得:
∴
由得:
或
又
∴
又
∵,即
∴
故由①、②得或
22、(I)解:方程的兩個(gè)根為
,
,
當(dāng)時(shí),
,
所以;
當(dāng)時(shí),
,
,
所以;
當(dāng)時(shí),
,
,
所以時(shí);
當(dāng)時(shí),
,
,
所以.
(II)解:
.
(III)證明:,
所以,
.
當(dāng)時(shí),
,
,
同時(shí),
.
綜上,當(dāng)時(shí),
.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com