日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖3.是正ABC內(nèi)的一點.且 查看更多

           

          題目列表(包括答案和解析)

          如圖,在直角坐標(biāo)系xOy中,直線y=kx+b交x軸負(fù)半軸于A(-1,0),交y軸正半軸于B,C是x軸負(fù)半軸上一點,且CA=
          34
          CO,△ABC的面積為6.
          精英家教網(wǎng)
          (1)求C點的坐標(biāo);
          (2)求直線AB的解析式;
          (3)D是第二象限內(nèi)一動點,且OD⊥BD,直線BE垂直射線CD于E,OF⊥OD交直線BE于F.當(dāng)線段OD,BD的長度發(fā)生改變時,∠BDF的大小是否發(fā)生改變?若改變,請說明理由;若不變,請證明并求出其值.
          精英家教網(wǎng)

          查看答案和解析>>

          22、如圖,已知每個小方格都是邊長為1的正方形,我們稱每個小正方形的頂點為格點,以格點為頂點的圖形稱為格點圖形.圖中的△ABC是一個格點三角形.
          (1)請你在第一象限內(nèi)畫出格點△AB1C1,使得△AB1C1∽△ABC,且△AB1C1與△ABC的相似比為3:1;
          (2)寫出B1、C1兩點的坐標(biāo).

          查看答案和解析>>

          如圖,在規(guī)格為8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,請在所給網(wǎng)格中按下列要求操作:
          (1)直接寫出A、B兩點的坐標(biāo);
          (2)在第二象限內(nèi)的格點(網(wǎng)格線的交點)上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),求C點坐標(biāo);
          (3)以(2)中△ABC的頂點C為旋轉(zhuǎn)中心,畫出△ABC旋轉(zhuǎn)180°后所得到的△DEC,連接AE和BD,試判定四邊形ABDE是什么特殊四邊形,并說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          14、如圖,已知AB是半徑為1的圓O的一條弦,且AB<1,以AB為一邊在圓O內(nèi)作正△ABC,點D為圓O上不同于點A的一點,且DB=AB,DC的延長線交圓O于點E,試探究AE的長是否為定值(不隨AB長度的變化而變化)?若為定值,求出這個定值;若不為定值,試確定AE與AB長之間的關(guān)系.
          AE=AB

          查看答案和解析>>

          如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10.若將△PAC繞點A逆時針旋轉(zhuǎn)60°后,得到△P′AB,則點P與P′之間的距離為
          6
          6
          ,∠APB=
          150°
          150°

          查看答案和解析>>

          一、選擇題

          1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

          二、填空題

          7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

          11. 略;  12. ; 13.  6,150;  14.  4; 15. .

          三、解答題

          16.原式=    ------------------------------4分

          = -- --------------------------------------------------------------6分

          = .-----------------------------------------------------------------------------7分

          17.(1) 證明:在中,--2分

          分別是的中點,∴.   ∴.---------4分

          (2) 四邊形是矩形.

          證明:∵四邊形是菱形,∴.      ----------------5分

          .     -----------------------------------------------------------------------6分

          ∴四邊形是平行四邊形.        ------------- 7分

          ∴四邊形是矩形.     ------------------------------------------------------------- 8分

          18.解:過,垂足為,   ----------------------------------------1分

          中,   ----------------------3分

          中, ,∴    ------------------5分

                   ------------------------------------6分

                         --------------------8分

          19.(1)證明:在等腰梯形中,,

                  --------------------------------------------------1分

          ,,

          .                      -------------3分

          (2) 解:過分別作,垂足分別為.

                 --------------------------------------------------------------------5分

          ,  ∴              ----------------------------------------------6分

          ,∴          ------------------------------------------------------7分

          (2)  解:存在.

          由(1)知.∴.   -----------------------------------------8分

          ,∴.          ---------------------------------------9分

          解得:        --------------------------------------------------------10分

          20.解:(1)原來一天可獲得的利潤為 (元)-------2分

          (2). ① 由題意,得.

          .                              ------------------4分

          .                           ----------------------------------------------- 5分

          ② 當(dāng)時,. ----------------------------6分

          解這個方程,得.  ----------------------------------------------------------------8分

           答:出售單價是77元或73元. ----------------------------------------------------------------9分

           73元77元.                             ----------------------- 10分

          21.解:(1)列表格如下:

          1

          2

          3

          4

          5

          6

          1

          (1,1)

          (1,2)

          (1,3)

          (1,4)

          (1,5)

          (1,6)

          2

          (2,1)

          (2,2)

          (2,3)

          (2,4)

          (2,5)

          (2,6)

          3

          (3,1)

          (3,2)

          (3,3)

          (3,4)

          (3,5)

          (3,6)

          4

          (4,1)

          (4,2)

          (4,3)

          (4,4)

          (4,5)

          (4,6)

          ----------------------------------------5分

          ⑵由函數(shù)解析式可知:只有點(1,4)和(3,1)在其圖像上,所以,甲獲勝的概率是,即平均每12次才獲勝1次,得10分;而乙獲勝的概率是,即平均每12次獲勝11次,得11分,所以我愿意當(dāng)乙.--------------------- 10分

          22.(1) 四邊形是平行四邊形.            ------------------------------1分

          證明:.又,..

          四邊形是平行四邊形.    -----------------------------------4分

          (2) 的重心,.    ---------------------------5分

          由(1)的證明過程,可知分別是邊長為的正三角形.

          的距離為.即. -----------------8分,時, 四邊形的面積有最大值是.

          此時,重合,, 四邊形是菱形. -------------------------11分

          23.解:⑴過點軸,垂足為,由垂徑定理,得的中點,

          .軸相切于中,

          的坐標(biāo)是.            -----------------2分

          設(shè)的解析式為.將兩點的坐標(biāo)代入,得解得所在直線的解析式為         --------------------- 4分

          (2) ∵,∴連結(jié).

          ,∴          -----------------------6分

          是直徑,∴

                   -------------------------------------------------------------------8分

          (3) 判斷:不存在.      ----------------------------------------------------------------- 9分

          假設(shè)存在點,使為等邊三角形.則.連結(jié),那么.,利用的面積,可得,不與重合, .這與等邊三角形定義矛盾.

          假設(shè)不成立.即點不存在. ----------------------------------------------------------- 12分-

           

           

           


          同步練習(xí)冊答案