日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)解:設(shè)雙曲線的方程為().由題設(shè)得 查看更多

           

          題目列表(包括答案和解析)

          (1)若橢圓的方程是:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),它的左、右焦點依次為F1、F2,P是橢圓上異于長軸端點的任意一點.在此條件下我們可以提出這樣一個問題:“設(shè)△PF1F2的過P角的外角平分線為l,自焦點F2引l的垂線,垂足為Q,試求Q點的軌跡方程?”
          對該問題某同學給出了一個正確的求解,但部分解答過程因作業(yè)本受潮模糊了,我們在
          精英家教網(wǎng)
          這些模糊地方劃了線,請你將它補充完整.
          解:延長F2Q 交F1P的延長線于E,據(jù)題意,
          E與F2關(guān)于l對稱,所以|PE|=|PF2|.
          所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
           
          ,
          在△EF1F2中,顯然OQ是平行于EF1的中位線,
          所以|OQ|=
          1
          2
          |EF1|=
           
          ,
          注意到P是橢圓上異于長軸端點的點,所以Q點的軌跡是
           
          ,
          其方程是:
           

          (2)如圖2,雙曲線的方程是:
          x2
          a2
          -
          y2
          b2
          =1(a,b>0),它的左、右焦點依次為F1、F2,P是雙曲線上異于實軸端點的任意一點.請你試著提出與(1)類似的問題,并加以證明.

          查看答案和解析>>

          已知直線y=k(x-2)(k∈R)與雙曲線
          x2
          m
          -
          y2
          8
          =1
          ,某學生作了如下變形;由
          y=k(x-2)
          x2
          m
          -
          y2
          8
          =1
          消去y后得到形如關(guān)于x的方程ax2+bx+c=0.討論:當a=0時,該方程恒有一解;當a≠0時,b2>4ac恒成立,假設(shè)該學生的演算過程是正確的,則根據(jù)該學生的演算過程所提供的信息,求出實數(shù)m的取值范圍應(yīng)為( 。

          查看答案和解析>>

          已知直線y=k(x-2)(k∈R)與雙曲線
          x2
          m
          -
          y2
          8
          =1
          ,某學生作了如下變形;由
          y=k(x-2)
          x2
          m
          -
          y2
          8
          =1
          消去y后得到形如關(guān)于x的方程ax2+bx+c=0.討論:當a=0時,該方程恒有一解;當a≠0時,b2>4ac恒成立,假設(shè)該學生的演算過程是正確的,則根據(jù)該學生的演算過程所提供的信息,求出實數(shù)m的取值范圍應(yīng)為( 。
          A.(0,4]B.[4,+∞)C.(0,2]D.[2,+∞)

          查看答案和解析>>

          已知離心率為
          3
          2
          的橢圓C1的頂點A1,A2恰好是雙曲線
          x2
          3
          -y2=1
          的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設(shè)直線PA1,PA2的斜率分別為k1,k2
          (Ⅰ)求橢圓C1的標準方程;
          (Ⅱ)試判斷k1•k2的值是否與點P的位置有關(guān),并證明你的結(jié)論;
          (Ⅲ)當k1=
          1
          2
          時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為
          4
          5
          5
          ,求實數(shù)m的值.
          設(shè)計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識,考察學生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

          查看答案和解析>>

          已知離心率為
          3
          2
          的橢圓C1的頂點A1,A2恰好是雙曲線
          x2
          3
          -y2=1
          的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設(shè)直線PA1,PA2的斜率分別為k1,k2
          (Ⅰ)求橢圓C1的標準方程;
          (Ⅱ)試判斷k1•k2的值是否與點P的位置有關(guān),并證明你的結(jié)論;
          (Ⅲ)當k1=
          1
          2
          時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為
          4
          5
          5
          ,求實數(shù)m的值.
          設(shè)計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識,考察學生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

          查看答案和解析>>


          同步練習冊答案