日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知離心率為
          3
          2
          的橢圓C1的頂點(diǎn)A1,A2恰好是雙曲線
          x2
          3
          -y2=1
          的左右焦點(diǎn),點(diǎn)P是橢圓上不同于A1,A2的任意一點(diǎn),設(shè)直線PA1,PA2的斜率分別為k1,k2
          (Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
          (Ⅱ)試判斷k1•k2的值是否與點(diǎn)P的位置有關(guān),并證明你的結(jié)論;
          (Ⅲ)當(dāng)k1=
          1
          2
          時(shí),圓C2:x2+y2-2mx=0被直線PA2截得弦長(zhǎng)為
          4
          5
          5
          ,求實(shí)數(shù)m的值.
          設(shè)計(jì)意圖:考察直線上兩點(diǎn)的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識(shí),考察學(xué)生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運(yùn)算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.
          分析:(Ⅰ)先利用橢圓C1的頂點(diǎn)A1,A2恰好是雙曲線
          x2
          3
          -y2=1
          的左右焦點(diǎn)求出頂點(diǎn)A1,A2的坐標(biāo),再利用離心率為
          3
          2
          即可求橢圓C1的標(biāo)準(zhǔn)方程;
          (Ⅱ)直接利用兩點(diǎn)坐標(biāo)求出k1•k2的值即可判斷k1•k2的值是否與點(diǎn)P的位置有關(guān);
          (Ⅲ)先利用(Ⅱ)的結(jié)論求出直線PA2的方程,再利用圓心到直線的距離以及弦長(zhǎng)和半徑之間的關(guān)系即可求實(shí)數(shù)m的值.
          解答:解:(Ⅰ)雙曲線
          x2
          3
          -y2=1
          的左右焦點(diǎn)為(±2,0)
          即A1,A2的坐標(biāo)分別為(-2,0),(2,0).(1分)
          所以設(shè)橢圓C1的標(biāo)準(zhǔn)方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,則a=2,(2分)
          e=
          c
          a
          =
          3
          2
          ,所以c=
          3
          ,從而b2=a2-c2=1,(4分)
          所以橢圓C1的標(biāo)準(zhǔn)方程為
          x2
          4
          +
          y2
          1
          =1
          .(5分)

          (Ⅱ)設(shè)P(x0,y0)則
          x02
          4
          +
          y02
          1
          =1
          ,即y02=1-
          x02
          4
          =
          4-x02
          4
          (6分)
          k1k2=
          y0-0
          x0-(-2)
          y0-0
          x0-2
          =
          y02
          x02-4
          =-
          1
          4
          .(8分)
          所以k1•k2的值與點(diǎn)P的位置無(wú)關(guān),恒為-
          1
          4
          . (9分)

          (Ⅲ)由圓C2:x2+y2-2mx=0得(x-m)2+y2=m2
          其圓心為C2(m,0),半徑為|m|,(10分)
          由(Ⅱ)知當(dāng)k1=
          1
          2
          時(shí),k2=-
          1
          2

          故直線PA2的方程為y=-
          1
          2
          (x-2)
          即x+2y-2=0,(11分)
          所以圓心為C2(m,0)到直線PA2的距離為d=
          |m+2×0-2|
          12+22
          =
          |m-2|
          5
          ,
          又由已知圓C2:x2+y2-2mx=0被直線PA2截得弦長(zhǎng)為
          4
          5
          5
          及垂徑定理得
          圓心C2(m,0)到直線PA2的距離d=
          m2-(
          2
          5
          5
          )
          2
          ,
          所以
          m2-(
          2
          5
          5
          )
          2
          =
          |m-2|
          5
          ,即m2+m-2=0,解得m=-2或m=1.(13分)
          所以實(shí)數(shù)m的值為1或-2.(14分).
          點(diǎn)評(píng):本題主要考查直線上兩點(diǎn)的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識(shí),考查學(xué)生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運(yùn)算能力、探究能力和推理能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•懷化三模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          過(guò)點(diǎn)(
          3
          ,
          3
          2
          )
          ,離心率e=
          1
          2
          ,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          ,
          y0
          b
          )
          稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的方程;
          (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,F(xiàn)1,F(xiàn)2為橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率e=
          3
          2
          ,S△DEF2=1-
          3
          2
          .若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          y0
          b
          )稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.直線l與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,已知以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為
          3
          2
          的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

          現(xiàn)給出下列5個(gè)命題①f(
          k
          2
          )=6
          ;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
          k
          2
          ,0)
          對(duì)稱;⑤函數(shù)f(m)=3
          3
          時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:懷化三模 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          過(guò)點(diǎn)(
          3
          ,
          3
          2
          )
          ,離心率e=
          1
          2
          ,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          y0
          b
          )
          稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的方程;
          (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案