日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:.離心率.所以 查看更多

           

          題目列表(包括答案和解析)

          已知,是橢圓左右焦點,它的離心率,且被直線所截得的線段的中點的橫坐標(biāo)為

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)是其橢圓上的任意一點,當(dāng)為鈍角時,求的取值范圍。

          【解析】解:因為第一問中,利用橢圓的性質(zhì)由   所以橢圓方程可設(shè)為:,然后利用

              

                橢圓方程為

          第二問中,當(dāng)為鈍角時,,    得

          所以    得

          解:(Ⅰ)由   所以橢圓方程可設(shè)為:

                                                 3分

              

                橢圓方程為             3分

          (Ⅱ)當(dāng)為鈍角時,,    得   3分

          所以    得

           

          查看答案和解析>>

          已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

          【解析】第一問利用設(shè)橢圓的方程為,由題意得

          解得

          第二問若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為,

          所以

          所以

          ,

          因為,即

          所以

          所以,解得

          因為A,B為不同的兩點,所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>

          給定下列結(jié)論:

          ①在區(qū)間內(nèi)隨機地抽取兩數(shù)則滿足概率是;

          ②已知直線l1,l2:x- by + 1= 0,則的充要條件是

          ③為了解一片經(jīng)濟林的生長情況,隨機測量了其中100株樹木的底部周長(單位:cm)。根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如下),那么在這100株樹木中,底部周長小于110cm的株數(shù)是70株;

          ④極坐標(biāo)系內(nèi)曲線的中心與點的距離為

          以上結(jié)論中正確的是_____________________(用序號作答)

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標(biāo)原點.

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點P的坐標(biāo)為.由題意,有  ①

          ,得

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

          由條件得消去并整理得  ②

          ,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

          由P在橢圓上,有

          因為,,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>

          如圖,分別是橢圓+=1()的左、右焦點,是橢圓的頂點,是直線與橢圓的另一個交點,=60°.

          (Ⅰ)求橢圓的離心率;

          (Ⅱ)已知△的面積為40,求的值.

          【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為

          (Ⅱ)因△的面積為40,設(shè),又面積公式,又直線,

          又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,,所以,解得。

           

          查看答案和解析>>


          同步練習(xí)冊答案