日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以數(shù)列為等差數(shù)列.方法2 查看更多

           

          題目列表(包括答案和解析)

          已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.

          (Ⅰ)求數(shù)列的通項公式;

          (Ⅱ)記,,證明).

          【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

          ,得,.

          由條件,得方程組,解得

          所以,.

          (2)證明:(方法一)

          由(1)得

               ①

             ②

          由②-①得

          (方法二:數(shù)學歸納法)

          ①  當n=1時,,,故等式成立.

          ②  假設(shè)當n=k時等式成立,即,則當n=k+1時,有:

             

             

          ,因此n=k+1時等式也成立

          由①和②,可知對任意,成立.

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項公式;

          (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于,

          時,;當時,

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學歸納法.

          時,,成立.

          假設(shè)當時,不等式成立,

          時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證 

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          (14分)從某學校高三年級共800名男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組、第二組;…第八組,右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

          (1)估計這所學校高三年級全體男生身高180cm以上(含180cm)的人數(shù);

          (2)求第六組、第七組的頻率并補充完整頻率分布直方圖;

          (3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,求滿足的事件概率.

          查看答案和解析>>

            從某學校高三年級共800名男生中隨機抽取50人測量身高,據(jù)測量,被測同學身高全部介于155至195之間,將測量結(jié)果按如下方式分成八組:第一組;第二組;…;第八組.如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次成等差數(shù)列.

          (1)估計這所學校高三年級全體男生身高在180以上(含180)的人數(shù);

          (2)求第六組、第七組的頻率并將頻率分布直方圖補充完整;

          (3)計算該校男生的平均身高;

          (4)若從身高屬于第六組和第八組的所有男生中隨機抽取2人,記他們的身高分別為,求滿足的事件的概率.

          查看答案和解析>>

            從某學校高三年級共800名男生中隨機抽取50人測量身高,據(jù)測量,被測同學身高全部介于155至195之間,將測量結(jié)果按如下方式分成八組:第一組;第二組;…;第八組.如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次成等差數(shù)列.

          (1)估計這所學校高三年級全體男生身高在180以上(含180)的人數(shù);

          (2)求第六組、第七組的頻率并將頻率分布直方圖補充完整;

          (3)計算該校男生的平均身高;

          (4)若從身高屬于第六組和第八組的所有男生中隨機抽取2人,記他們的身高分別為,求滿足的事件的概率.

          查看答案和解析>>


          同步練習冊答案