題目列表(包括答案和解析)
在中,
,分別是角
所對邊的長,
,且
(1)求的面積;
(2)若,求角C.
【解析】第一問中,由又∵
∴
∴
的面積為
第二問中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴
解:(1) ………………2分
又∵∴
……………………4分
∴的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得: ∴
又
∴
已知在中,
,
,
,解這個三角形;
【解析】本試題主要考查了正弦定理的運用。由正弦定理得到:,然后又
又再又
得到c。
解:由正弦定理得到:
又
……4分
又 ……8分
又
如圖,在四棱錐中,
⊥底面
,底面
為正方形,
,
,
分別是
,
的中點.
(I)求證:平面
;
(II)求證:;
(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.
【解析】第一問利用線面平行的判定定理,,得到
第二問中,利用,所以
又因為,
,從而得
第三問中,借助于等體積法來求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是
的中點,
,
. …4分
(Ⅱ)證明:四邊形
為正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當時,求證:
;
(Ⅱ)若邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當a=1時,底面ABCD為正方形,
又因為,
………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,
又
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
已知四棱錐P-ABCD,底面ABCD是、邊長為
的菱形,又
,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:MB平面PAD;
(2)求點A到平面PMB的距離.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com