日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅲ) 若點為的中點.求二面角的大小. 查看更多

           

          題目列表(包括答案和解析)

          若圖為一簡單組合體,其底面ABCD為正方形,PD平面ABCD,EC//PD,且PD=2EC。

             (1)求證:BE//平面PDA;

             (2)若N為線段PB的中點,求證:EN平面PDB;

             (3)若,求平面PBE與平面ABCD所成的二面角的大小。

          查看答案和解析>>

          精英家教網(wǎng)如圖,在五面體ABCDEF中,F(xiàn)A⊥平面ABCD,AD∥BC∥FE,AB⊥AD,AF=AB=BC=EF=
          1
          2
          AD

          (1)求異面直線AC和DE所成的角
          (2)求二面角A-CD-E的大小
          (3)若Q為EF的中點,P為AC上一點,當
          AP
          PC
          為何值時,PQ∥平面EDC?

          查看答案和解析>>

          精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=2,PB=PD=2
          2
          ,點F是PC的中點.
          (Ⅰ)求證:PC⊥BD;
          (Ⅱ)求BF與平面ABCD所成角的大;
          (Ⅲ)若點E在棱PD上,當
          PE
          PD
          為多少時二面角E-AC-D的大小為
          π
          6
          ?

          查看答案和解析>>

          如圖,在四面體A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
          2
          .M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ=3QC.
          (1)證明:PQ平面BCD;
          (2)若二面角C-BM-D的大小為60°,求∠BDC的大小.
          精英家教網(wǎng)

          查看答案和解析>>

          如圖,在△中,,,的中點,沿將△折起到△的位置,使得直線與平面角。

           (1)若點到直線的距離為,求二面角的大小;

           (2)若,求邊的長。

          查看答案和解析>>

          一、選擇題:本大題共10小題,每小題5分,共50分.

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          解答

          D

          D

          A

          B

          D

          C

          C

          B

          D

          D

          二、填空題:本大題共7小題,每小題4分,共28分

          11.   負                                        12.            

          13.    7                                        14.                            

          15.   4010                                    16.                         

          17.若他不放棄這5道題,則這5道題得分的期望為:                                                                           

          三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

          18.解:(Ⅰ)①,②,③,④處的數(shù)值分別為:3,0.025,0.100,1.…………4分

          (Ⅱ)

                      …………………………………………………………………………8分

          (Ⅲ)(?)120分及以上的學(xué)生數(shù)為:(0.275+0.100+0.050)×5000=2125;

          (?)平均分為:

          (?)成績落在[126,150]中的概率為:

          …………………………………………………………………………14分

          19.解:(Ⅰ) 由三視圖可知,四棱錐的底面是邊長為1的正方形,

          側(cè)棱底面,且.                           

          ,

          即四棱錐的體積為.             ………………………………4分

          (Ⅱ) 不論點在何位置,都有.                            

          證明如下:連結(jié),∵是正方形,∴.          

          底面,且平面,∴.        

          又∵,∴平面.                        

          ∵不論點在何位置,都有平面

          ∴不論點在何位置,都有.        ………………………………8分

          (Ⅲ) 解法1:在平面內(nèi)過點,連結(jié).

          ,,

          ∴Rt△≌Rt△

          從而△≌△,∴.

          為二面角的平面角.                           

          在Rt△中,,

          ,在△中,由余弦定理得

          ,             

          ,即二面角的大小為.  …………………14分

           

          解法2:如圖,以點為原點,所在的直線分別為軸建立空間直角

          坐標系. 則,從而

          ,,,.

          設(shè)平面和平面的法向量分別為

          ,,

          ,取.   

          ,取

          設(shè)二面角的平面角為

          ,       

            ∴,即二面角的大小為.    …………………14分

          20.解:(Ⅰ)令

          、

          由①、②知,,又上的單調(diào)函數(shù),

          .     ………………………………………………………………………4分

          (Ⅱ),

          ,

               …………………………………………………………………10分

          (Ⅲ)令,則

                   ……………………12分

          都成立

            

                  …………………………………………………………………………………15分

          21.解:(Ⅰ)設(shè)B(,),C(,),BC中點為(),F(2,0).

          則有.

          兩式作差有

          .

          設(shè)直線BC的斜率為,則有

          .  (1)

          因F2(2,0)為三角形重心,所以由,得

          ,

          代入(1)得.

          直線BC的方程為.      …………………………………………7分

           (Ⅱ)由AB⊥AC,得  (2)

          設(shè)直線BC方程為,得

           

          代入(2)式得,,

          解得

          故直線過定點(0,.        …………………………………………14分

          22.解:(Ⅰ)

          .

          時,

          .從而有.…………………5分

          (Ⅱ)設(shè)P,切線的傾斜角分別為,斜率分別為.則

          由切線軸圍成一個等腰三角形,且均為正數(shù)知,該三角形為鈍角三角形,

           或   .又

          .從而,

          …………………………………………………………………………………10分

          (Ⅲ)令

          ;

          時,即時,曲線與曲線無公共點,故方程無實數(shù)根;

          時,即時,曲線與曲線有且僅有1個公共點,故方程有且僅有1個實數(shù)根;

          時,即時,曲線與曲線有2個交點,故方程有2個實數(shù)根.         …………………………………………………………………15分

           

           

           


          同步練習冊答案