日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20甲.如圖.正三棱柱的底面邊長(zhǎng)為a.點(diǎn)M在邊BC上.△是以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形. 查看更多

           

          題目列表(包括答案和解析)

          (08年濰坊市六模) (12分)如圖,正三棱柱的底面邊長(zhǎng)為a,點(diǎn)M在邊BC上,△是以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形.

           

            (1)求證點(diǎn)M為邊BC的中點(diǎn);

            (2)求點(diǎn)C到平面的距離;

           。3)求二面角的大。

           

          查看答案和解析>>

          如圖,正三棱柱的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,點(diǎn)在棱上.

          (1) 若,求證:直線平面

          (2)是否存在點(diǎn), 使平面⊥平面,若存在,請(qǐng)確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由;

          (3)請(qǐng)指出點(diǎn)的位置,使二面角平面角的大小為

          查看答案和解析>>

          如圖,正三棱柱的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,點(diǎn)在棱上.

          (1)若,求證:直線平面

          (2)若,二面角平面角的大小為, 求的值。  

          查看答案和解析>>

          (本小題8分)如圖,正三棱柱的底面邊長(zhǎng)為,側(cè)棱

          延長(zhǎng)線上一點(diǎn),且

          (1)求證:直線平面;

          (2)求二面角的大小.

           

          查看答案和解析>>

          (本小題8分)如圖,正三棱柱的底面邊長(zhǎng)為,側(cè)棱,
          延長(zhǎng)線上一點(diǎn),且

          (1)求證:直線平面;
          (2)求二面角的大小.

          查看答案和解析>>

          1.(文)A(理)C 2.(文)A(理)B 3.C 4.(文)D(理)B 

          5.(文)D (理)C 6.A 7.C 8.B 9.A 10.D 11.A 12.C 

          13.33 14.7 15.18

            16.只要寫出-4c2c,cc≠0)中一組即可,如-4,2,1等

            17.解析:

                        

                        

            18.解析:(1)由,,成等差數(shù)列,得,

            若q=1,則,,

            由≠0 得 ,與題意不符,所以q≠1.

            由,得

            整理,得,由q≠0,1,得

           。2)由(1)知:,

            ,所以,,成等差數(shù)列.

            19.解析:(1)記“摸出兩個(gè)球,兩球恰好顏色不同”為A,摸出兩個(gè)球共有方法種,

            其中,兩球一白一黑有種.

            ∴ 

           。2)法一:記摸出一球,放回后再摸出一個(gè)球“兩球恰好顏色不同”為B,摸出一球得白球的概率為,摸出一球得黑球的概率為,

            ∴ PB)=0.4×0.6+0.6+×0.4=0.48

            法二:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”.

            ∴ 

            ∴ “有放回摸兩次,顏色不同”的概率為

            20.解析:(甲)(1)∵ △為以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形,∴ 

            ∵ 正三棱柱, ∴ 底面ABC

            ∴ 在底面內(nèi)的射影為CM,AMCM

            ∵ 底面ABC為邊長(zhǎng)為a的正三角形, ∴ 點(diǎn)MBC邊的中點(diǎn).

           。2)過(guò)點(diǎn)CCH,由(1)知AMAMCM,

            ∴ AM⊥平面 ∵ CH在平面內(nèi), ∴ CHAM,

            ∴ CH⊥平面,由(1)知,,

            ∴ . ∴ 

            ∴ 點(diǎn)C到平面的距離為底面邊長(zhǎng)為

            (3)過(guò)點(diǎn)CCII,連HI, ∵ CH⊥平面,

            ∴ HICI在平面內(nèi)的射影,

            ∴ HI,∠CIH是二面角的平面角.

            在直角三角形中,,

          ,

            ∴ ∠CIH=45°, ∴ 二面角的大小為45°

           。ㄒ遥┙猓海1)以B為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.

            ∵ AC2a,∠ABC=90°,

            ∴ 

            ∴ B(0,0,0),C(0,,0),A,0,0),

            ,0,3a),(0,,3a),(0,0,3a).

            ∴ ,,,,,

            ∴ ,,,,

            ∴ ,, ∴ 

            ∴ . 故BE所成的角為

           。2)假設(shè)存在點(diǎn)F,要使CF⊥平面,只要

            不妨設(shè)AFb,則F,0,b),,,0,,, ∵ , ∴ 恒成立.

            ,

            故當(dāng)2a時(shí),平面

            21.解析:(1)法一:l,

            解得. ∵ 、、成等比數(shù)列,

            ∴ , ∴ , ,,,

            ∴ ,. ∴ 

            法二:同上得,

            ∴ PAx軸.. ∴ 

           。2) ∴ 

            即 , ∵ ,

            ∴ ,即 ,. ∴ ,即 

            22.解析:(1). 又cb<1,

            故 方程fx)+1=0有實(shí)根,

            即有實(shí)根,故△=

            即

            又cb<1,得-3<c≤-1,由

           。2),

            ∴ cm<1 ∴ 

            ∴ . ∴ 的符號(hào)為正.

           


          同步練習(xí)冊(cè)答案