日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. C. D. 題號123456789101112得分答案 第Ⅱ卷(非選擇題.共90分) 查看更多

           

          題目列表(包括答案和解析)

          A={x|x2-4x-12≤0},B={x|x2-2x-3>0  x∈z},則A∩B=(  )

          查看答案和解析>>

          在平面直角坐標系中,若不等式組
          y≥0
          y≤2x
          y≤k(x-1)-1
          表示一個三角形區(qū)域,則實數(shù)k的取值范圍是( 。
          A、(-∞,-1)
          B、(0,+∞)
          C、(0,2)∪(2,+∞)
          D、(-∞,-1)∪(0,2)∪(2,+∞)

          查看答案和解析>>

          fxx2是從集合A到集合B的映射,如果B={1,2},則AB為(  )

          A.∅                             B.{1}   

          C.∅或{2}                        D.∅或{1}

          查看答案和解析>>

           上有一點 ,它到的距離與它到焦點的距離之和最小,則點的坐標是(    )

          A.(-2,1)       B.(1,2)        C. (2,1)       D.(-1,2)

           

          查看答案和解析>>

          若f(x)=|lgx|,當a<b<c時,f(a)>f(c)>f(b).則下列不等式中正確的為(  )。

            A.(a-1)(c-1)>0   B.a(chǎn)c>1   C.a(chǎn)c=1   D.a(chǎn)c<1

           

          查看答案和解析>>

          1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 

          10.B 11.(理)A。ㄎ模〤 12.B 13.(理)。ㄎ模25,60,15 

          14.-672 15.2.5小時 16.①,④

            17.解析:設fx)的二次項系數(shù)為m,其圖象上兩點為(1-x,)、B(1+x,)因為,,所以,由x的任意性得fx)的圖象關于直線x=1對稱,若m>0,則x≥1時,fx)是增函數(shù),若m<0,則x≥1時,fx)是減函數(shù).

            ∵ ,,,

          ,

            ∴ 當時,

          ,

            ∵ , ∴ 

            當時,同理可得

            綜上:的解集是當時,為;

            當時,為,或

            18.解析:(理)(1)設甲隊在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊獲勝,前四場比賽甲隊獲勝三場

            依題意得

            (2)設甲隊獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

            ∴ 

           。ㄎ模┰O甲袋內(nèi)恰好有4個白球為事件B,則B包含三種情況.

           、偌状腥2個白球,且乙袋中取2個白球,②甲袋中取1個白球,1個黑球,且乙袋中取1個白球,1個黑球,③甲、乙兩袋中各取2個黑球.

            ∴ 

            19.解析:(甲)(1)建立如圖坐標系:O為△ABC的重心,直線OPz軸,ADy軸,x軸平行于CB,

            得A(0,,0)、B(1,,0)、D(0,,0)、E(0,,).

            (2),,,,

            設ADBE所成的角為,則

           ∴ 

           。ㄒ遥1)取中點E,連結ME,

            ∴ MCEC. ∴ MC. ∴ ,MC,N四點共面.

           。2)連結BD,則BD在平面ABCD內(nèi)的射影.

            ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

            ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

           。3)連結,由是正方形,知

            ∵ MC, ∴ ⊥平面

            ∴ 平面⊥平面

           。4)∠與平面所成的角且等于45°.

            20.解析:(1)

            ∵ x≥1. ∴ 

            當x≥1時,是增函數(shù),其最小值為

            ∴ a<0(a=0時也符合題意). ∴ a≤0.

           。2),即27-6a-3=0, ∴ a=4.

            ∴ 有極大值點,極小值點

            此時fx)在,上時減函數(shù),在,+上是增函數(shù).

            ∴ fx)在,上的最小值是,最大值是,(因).

            21.解析:(1)∵ 斜率k存在,不妨設k>0,求出M,2).直線MA方程為,直線MB方程為

            分別與橢圓方程聯(lián)立,可解出,

            ∴ . ∴ (定值).

           。2)設直線AB方程為,與聯(lián)立,消去y

            由D>0得-4<m<4,且m≠0,點MAB的距離為

            設△AMB的面積為S. ∴ 

            當時,得

            22.解析:(1)∵ ,a,,

            ∴   ∴   ∴ 

            ∴ 

            ∴ a=2或a=3(a=3時不合題意,舍去). ∴a=2.

           。2),由可得

            . ∴ 

            ∴ b=5

            (3)由(2)知,, ∴ 

            ∴ . ∴ 

            ∵ ,

            當n≥3時,

            

               

            

            

            ∴ . 綜上得 

           


          同步練習冊答案