日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)是經(jīng)過橢圓長軸頂點(diǎn)且與長軸垂直的直線.是兩個(gè)焦點(diǎn).點(diǎn).不與重合.若.則有.類比此結(jié)論到雙曲線.是經(jīng)過焦點(diǎn)且與實(shí)軸垂直的直線.是兩個(gè)頂點(diǎn).點(diǎn).不與重合.若.試求角的取值范圍. 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓C:
          x2
          a3
          +
          y2
          b2
          =1(a>b>0)
          的右焦點(diǎn)為F,離心率為
          2
          2
          ,過點(diǎn)F且與實(shí)軸垂直的直線被橢圓截得的線段長為
          2
          ,O為坐標(biāo)原點(diǎn).
          (I)求橢圓C的方程;
          (Ⅱ)設(shè)經(jīng)過點(diǎn)M(0,2)作直線A B交橢圓C于A、B兩點(diǎn),求△AOB面積的最大值;
          (Ⅲ)設(shè)橢圓的上頂點(diǎn)為N,是否存在直線l交橢圓于P,Q兩點(diǎn),使點(diǎn)F為△PQN的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          如圖,橢圓的中心在原點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),B為橢圓的一個(gè)頂點(diǎn),過點(diǎn)B作與FB垂直的直線BP交x軸于P點(diǎn),且橢圓的長半軸長a和短半軸長b是關(guān)于x的方程3x2-3
          3
          cx+2c2=0
          (其中c為半焦距)的兩個(gè)根.
          (I)求橢圓的離心率;
          (Ⅱ)經(jīng)過F、B、P三點(diǎn)的圓與直線x+
          3
          y-
          3
          =0
          相切,試求橢圓的方程.

          查看答案和解析>>

          如圖,橢圓的中心在原點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),B為橢圓的一個(gè)頂點(diǎn),過點(diǎn)B作與FB垂直的直線BP交x軸于P點(diǎn),且橢圓的長半軸長a和短半軸長b是關(guān)于x的方程3x2-cx+2c2=0(其中c為半焦距)的兩個(gè)根。
          (1)求橢圓的離心率;
          (2)經(jīng)過F、B、P三點(diǎn)的圓與直線相切,試求橢圓的方程。

          查看答案和解析>>

          如圖,橢圓的中心在原點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),B為橢圓的一個(gè)頂點(diǎn),過點(diǎn)B作與FB垂直的直線BP交x軸于P點(diǎn),且橢圓的長半軸長a和短半軸長b是關(guān)于x的方程(其中c為半焦距)的兩個(gè)根.
          (I)求橢圓的離心率;
          (Ⅱ)經(jīng)過F、B、P三點(diǎn)的圓與直線相切,試求橢圓的方程.

          查看答案和解析>>

          精英家教網(wǎng)如圖,已知橢圓
          x2
          a2
          +
          y2
          b2
          =1 (a>b>0)
          的長軸為AB,過點(diǎn)B的直線l與x軸垂直.直線(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所經(jīng)過的定點(diǎn)恰好是橢圓的一個(gè)頂點(diǎn),且橢圓的離心率e=
          3
          2

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長HP到點(diǎn)Q使得HP=PQ,連接AQ延長交直線l于點(diǎn)M,N為MB的中點(diǎn).試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

          查看答案和解析>>

           

          一 、選擇題

          1.C.  2.A.  3.A.  4.A.  5.A. 6.C.  7.A.  8.A.  9.C.  10.D.  11.C.12.D.

          一、                                                              填空題

          13.. 14.2. 15.16.  16.13.

          三、解答題

          17.(理科) (1)由(1+tanA)(1+tanB)=2,得

          tanA+tanB=1-tanAtanB,

          即tan(A+B)=1.              

          ∵A、B為△ABC內(nèi)角, ∴A+B=.  則 C=(定值).

          (2)已知△ABC內(nèi)接于單位圓, ∴△ABC外接圓半徑R=1.

          ∴由正弦定理得:,,.

          則△ABC面積S=

                            =

                            =

          ∵  0<B<, ∴.

              故 當(dāng)時(shí),△ABC面積S的最大值為.   

          (文科) (1),

          ,,∴

          ∴ 向量的夾角的大小為

          (2)

          為鄰邊的平行四邊形的面積

          據(jù)此猜想,的幾何意義是以、為鄰邊的平行四邊形的面積.

          18. (1)學(xué)生甲恰好抽到3道歷史題,2道地理題的概率為

                 (2)若學(xué)生甲被評(píng)為良好,則他應(yīng)答對(duì)5道題或4道題

                 而答對(duì)4道題包括兩種情況:①答對(duì)3道歷史題和1道地理(錯(cuò)一道地理題);②答對(duì)2道歷史題和2道地理題(錯(cuò)一道歷史題)。

                 設(shè)答對(duì)5道記作事件A;

                 答對(duì)3道歷史題,1道地理題記作事件B;

                 答對(duì)2道歷史題,2道地理題,記作事件C;

                 ,

                    ,

                   

                 ∴甲被評(píng)為良好的概率為:

                

          19.  (1)延長AC到G,使CG=AC,連結(jié)BG、DG,E是AB中點(diǎn),

              故直線BG和BD所成的銳角(或直角)就是CE和BD所成的角.

             

             (2)設(shè)C到平面ABD的距離為h

             

             

          20. (1)

          (2) 由(1)知:,故是增函數(shù)

          對(duì)于一切恒成立.

          由定理知:存在

          由(1)知:

            

          的一般性知:

          21. (1)以中點(diǎn)為原點(diǎn),所在直線為軸,建立平面直角坐標(biāo)系,則

           

           

           

           

           

           

           

           

           

          設(shè),由,此即點(diǎn)的軌跡方程.

             (2)將向右平移一個(gè)單位,再向下平移一個(gè)單位后,得到圓,

          依題意有

             (3)不妨設(shè)點(diǎn)的上方,并設(shè),則,

          所以,由于,

          22.(理科)⑴ ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=a-x

          ∵f(x)是奇函數(shù),g(x)是偶函數(shù),∴-f(x)+g(x)=a-x

          ∴f(x)=,g(x)=

          是R上的減函數(shù),

          ∴y=f -1(x)也是R上的減函數(shù). 

           

           n>2,當(dāng)上是增函數(shù).是減函數(shù);

          上是減函數(shù).是增函數(shù).

          (文科) (1)∵函數(shù)時(shí)取得極值,∴-1,3是方程的兩根,

          (2),當(dāng)x變化時(shí),有下表

          x

          (-∞,-1)

          -1

          (-1,3)

          3

          (3,+∞)

          f(x)

          +

          0

          -

          0

          +

          f(x)

          Max

          c+5

          Min

          c-27

          時(shí)f(x)的最大值為c+54.

          要使f(x)<2|c|恒成立,只要c+54<2|c|即可.

          當(dāng)c≥0時(shí)c+54<2c,  ∴c>54.

          當(dāng)c<0時(shí)c+54<-2c,∴c<-18.

          ∴c∈(-∞,-18)∪(54,+∞)


          同步練習(xí)冊(cè)答案