題目列表(包括答案和解析)
(本題滿分14分)
已知實數(shù),曲線
與直線
的交點為
(異于原點
),在曲線
上取一點
,過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,接著過點
作
平行于
軸,交直線
于點
,過點
作
平行于
軸,交曲線
于點
,如此下去,可以得到點
,
,…,
,… . 設(shè)點
的坐標為
,
.
(Ⅰ)試用表示
,并證明
;
(Ⅱ)試證明,且
(
);
(本題滿分14分)
已知函數(shù)圖象上一點
處的切線方程為
.
(Ⅰ)求的值;
(Ⅱ)若方程在
內(nèi)有兩個不等實根,求
的取值范圍(其中
為自然對數(shù)的底數(shù));
(Ⅲ)令,若
的圖象與
軸交于
,
(其中
),
的中點為
,求證:
在
處的導(dǎo)數(shù)
.
(本題滿分14分)
已知曲線方程為
,過原點O作曲線
的切線
(1)求的方程;
(2)求曲線,
及
軸圍成的圖形面積S;
(本題滿分14分)
已知中心在原點,對稱軸為坐標軸的橢圓,左焦點,一個頂點坐標為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點
交橢圓于A、B兩點,當△AOB面積最大時,求直線
方程。
(本題滿分14分)
如圖,在直三棱柱中,
,
,求二面角
的大小。
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
B
C
A
B
A
C
B
B
理D 文B
D
理D 文C
二.填空題
13.(理)-1;(文) (-1,1)∪(2,+∞). 14. 90.
15. ;
16. (理)x+2y-3=0; (文)
.
三.解答題
17. 解:(I)平移以后得
,又
關(guān)于
對稱
,
,
當且僅當時取最大值,
所以,取得最大值時的集合為.…………6分
(II)的最小正周期為
;
,
,
在[
上的值域為
.…………12分
18.解:(I)當n∈N時有:
=2
-3n, ∴
=2
-3(n+1),
兩式相減得:=2
-2
-3 ∴
=2
+3! 撤
∴+3=2(
+3)。
又=
=2
-3, ∴
=3,
+3=6≠0 ……4分
∴數(shù)列{+3}是首項6,公比為2的等比數(shù)列.從而c=3. ……6分
(II)由(1)知:+3=
, ∴
=
-3. ………8分
(Ⅲ)假設(shè)數(shù)列{}中是否存在三項
,
,
,(r<s<t),它們可以構(gòu)成等差數(shù)列,
∵<
<
, ∴只能是
+
=2
,
∴(-3)+(
-3)=2(
-3)
即+
=
.∴1+
=
.
∵r<s<t,r、s、t均為正整數(shù),∴式左邊為奇數(shù)右邊為偶數(shù),不可能成立.
因此數(shù)列{}中不存在可以構(gòu)成等差數(shù)列的三項. ………12分
19. (理)解:設(shè)從甲袋中取出個白球的事件為
,從乙袋中取出
個白球的事件為
其中
=0,1,2,則
,
.
(I),
,
所以………………………..6分
(II)分布列是
0
1
2
3
4
P
……………12分
(文) 19.(I)三人恰好買到同一只股票的概率。 ……4分
(II)解法一:三人中恰好有兩個買到同一只股票的概率.……9分
由(I)知,三人恰好買到同一只股票的概率為,所以三人中至少有兩人買到同一只股票的概率
。 ……12分
|