日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ⑴當(dāng)n=3時(shí).設(shè)x=3.y=0的概率, ⑵當(dāng)n=4時(shí).求的概率. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)y=f(x)對(duì)任意的實(shí)數(shù)x,都有,且當(dāng)x∈[0,1]時(shí),f(x)=2yx2(1-x).

          (1)若x∈[1,2]時(shí),求y=f(x)的解析式;

          (2)對(duì)于函數(shù)y=f(x)(x∈[0,+∞)),試問(wèn):在它的圖象上是否存在點(diǎn)P,使得函數(shù)在點(diǎn)P處的切線與x+y=0平行.若存在,那么這樣的點(diǎn)P有幾個(gè);若不存在,說(shuō)明理由.

          (3)已知n∈N*,且xn∈[n,n+1],記Sn=f(x1)+f(x2)+…+f(xn),求證:0≤Sn<4.

          查看答案和解析>>

          設(shè)函數(shù)y=f(x)的定義域?yàn)?B>R,對(duì)任意實(shí)數(shù)m,n,有f(m+n)=f(m)f(n),且當(dāng)x<0時(shí),f(x)>1數(shù)列{an}滿(mǎn)足a1f(0),且(n∈N*).

          (1)求證:y=f(x)在R上單調(diào)遞減.

          (2)求數(shù)列{an}的通項(xiàng)公式.

          (3)是否存在正數(shù)k,對(duì)一切n∈N*均成立?若存在.試求出k的最大值并證明:若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          設(shè)函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,都有f(x)=2f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=x2(1-x).

          (1)已知n∈N+,當(dāng)x∈[n,n+1]時(shí),求y=f(x)的解析式;

          (2)求證:對(duì)于任意的n∈N+,當(dāng)x∈[n,n+1]時(shí),都有|f(x)|≤

          (3)對(duì)于函數(shù)y=f(x)(x∈[0,+∞),若在它的圖象上存在點(diǎn)P,使經(jīng)過(guò)點(diǎn)P的切線與直線x+y=1平行,那么這樣點(diǎn)有多少個(gè)?并說(shuō)明理由.

          查看答案和解析>>

          設(shè)函數(shù)y=f(x)的定義域?yàn)?0,+∞),且對(duì)任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.

          (1)求的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;

          (2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且對(duì)任意的正整數(shù)n,均滿(mǎn)足,求數(shù)列{an}的通項(xiàng)公式.

          查看答案和解析>>

          設(shè)函數(shù)y=f(x)的定義域?yàn)?0,+∞),且對(duì)任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.

          (1)求f()的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;

          (2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項(xiàng)公式;

          (3)在(2)的條件下,是否存在實(shí)數(shù)M,使2n·a1·a2……an≥M··(2a1-1)·(2a2-1)……(2an-1)

          對(duì)于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          一、選擇題

          1.D  2.A  3.C  4.D  5.B  6.C  7.D  8.B  9.A  10.A

          二、填空題

          11.148  12.-4  13.  14.-6  15.①②③④

          三、解答題

          16.解:⑴

                                                                                                                           3分

          =1+1+2cos2x

          =2+2cos2x

          =4cos2x

          ∵x∈[0,]  ∴cosx≥0

          =2cosx                                                                                                    6分

          ⑵ f (x)=cos2x-?2cosx?sinx

                =cos2x-sin2x

                =2cos(2x+)                                                                                           8分

          ∵0≤x≤  ∴

            ∴

          ,當(dāng)x=時(shí)取得該最小值

           ,當(dāng)x=0時(shí)取得該最大值                                                                  12分

          17.由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為                    3分

          ①當(dāng)n=3時(shí),x=3,y=0的概率為                                              6分

          ②|x-y|=2時(shí),有x=3,y=1或x=1,y=3

          它的概率為                                                                12分

          18.解:⑴證明:在正方形ABCD中,AB⊥BC

          又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

          同理CD⊥PA  ∴PA⊥面ABCD    4分

          ⑵在AD上取一點(diǎn)O使AO=AD,連接E,O,

          則EO∥PA,∴EO⊥面ABCD 過(guò)點(diǎn)O做

          OH⊥AC交AC于H點(diǎn),連接EH,則EH⊥AC,

          從而∠EHO為二面角E-AC-D的平面角                                                             6分

          在△PAD中,EO=AP=在△AHO中∠HAO=45°,

          ∴HO=AOsin45°=,∴tan∠EHO=,

          ∴二面角E-AC-D等于arctan                                                                   8分

          ⑶當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC,理由如下:

          ∵AD∥2FC,∴,又由已知有,∴PF∥ES

          ∵PF面EAC,EC面EAC  ∴PF∥面EAC,

          即當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC                                                                         12分

          19.⑴f '(x)=3x2+2bx+c,由題知f '(1)=03+2b+c=0,

          f (1)=-11+b+c+2=-1

          ∴b=1,c=-5                                                                                                    3分

          f (x)=x3+x2-5x+2,f '(x)=3x2+2x-5

          f (x)在[-,1]為減函數(shù),f (x)在(1,+∞)為增函數(shù)

          ∴b=1,c=-5符合題意                                                                                      5分

          ⑵即方程:恰有三個(gè)不同的實(shí)解:

          x3+x2-5x+2=k(x≠0)

          即當(dāng)x≠0時(shí),f (x)的圖象與直線y=k恰有三個(gè)不同的交點(diǎn),

          由⑴知f (x)在為增函數(shù),

          f (x)在為減函數(shù),f (x)在(1,+∞)為增函數(shù),

          ,f (1)=-1,f (2)=2

          且k≠2                                                                                               12分

          20.⑴∵

                                                                                                   3分

          ∴{an-3n}是以首項(xiàng)為a1-3=2,公比為-2的等比數(shù)列

          ∴an-3n=2?(-2)n1

          ∴an=3n+2?(-2)n1=3n-(-2)n                                                                        6分

          ⑵由3nbn=n?(3n-an)=n?[3n-3n+(-2)n]=n?(-2)n

          ∴bn=n?(-)n                                                                                                    8分

          <6

          ∴m≥6                                                                                                                   13分

          21.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

          AM:y=   ①

          BN:y=  、

          聯(lián)立①②  ∴                                                                                      4分

          ∵點(diǎn)M(xo,yo)在圓⊙O上,代入圓的方程:

          整理:y2=-2(x+1)  (x<-1)                                                                             6分

          ⑵由

          設(shè)S(x1、y1),T(x2、y2),ST的中點(diǎn)坐標(biāo)(x0、y0)

          則x1+x2=-(3+)

          x1x2                                                                                                          8分

          中點(diǎn)到直線的距離

          故圓與x=-總相切.                                                                                        14分

          ⑵另解:∵y2=-2(x+1)知焦點(diǎn)坐標(biāo)為(-,0)                                                  2分

          頂點(diǎn)(-1,0),故準(zhǔn)線x=-                                                                              4分

          設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點(diǎn)O',O'到x=-的距離為

          又由拋物線定義:d1+d2=|ST|,∴

          故以ST為直徑的圓與x=-總相切                                                                      8分

           


          同步練習(xí)冊(cè)答案