日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 故當(dāng)=8,時(shí),. ------10分 查看更多

           

          題目列表(包括答案和解析)

          已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和

          【解析】第一問(wèn),因?yàn)橛深}設(shè)可知

           故

          ,又由題設(shè)    從而

          第二問(wèn)中,

          當(dāng)時(shí),時(shí)

          時(shí), 

          時(shí),

          分別討論得到結(jié)論。

          由題設(shè)可知

           故

          ,又由題設(shè)   

          從而……………………4分

          (2)

          當(dāng)時(shí),,時(shí)……………………6分

          時(shí),……8分

          時(shí),

           ……………………10分

          綜上可得 

           

          查看答案和解析>>

          設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().

          (1) 當(dāng)時(shí),試寫(xiě)出拋物線上的三個(gè)定點(diǎn)、、的坐標(biāo),從而使得

          ;

          (2)當(dāng)時(shí),若

          求證:;

          (3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:

          “若,則.”

          開(kāi)展了研究并發(fā)現(xiàn)其為假命題.

          請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:

          ① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

          ② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);

          ③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

          【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

          【解析】第一問(wèn)利用拋物線的焦點(diǎn)為,設(shè),

          分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.

          由拋物線定義得到

          第二問(wèn)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.

          由拋物線定義得

          第三問(wèn)中①取時(shí),拋物線的焦點(diǎn)為,

          設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;

          解:(1)拋物線的焦點(diǎn)為,設(shè),

          分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

           

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,

          故可取滿足條件.

          (2)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.

          由拋物線定義得

             又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

          ;

          所以.

          (3) ①取時(shí),拋物線的焦點(diǎn)為,

          設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;;,

          ,

          .

          ,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

          ② 設(shè),分別過(guò)

          拋物線的準(zhǔn)線的垂線,垂足分別為,

          及拋物線的定義得

          ,即.

          因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無(wú)關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

          ,

          ,所以.

          (說(shuō)明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)

          ③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

          “當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè)

          分別過(guò)作拋物線準(zhǔn)線的垂線,垂足分別為,由,

          及拋物線的定義得,即,則

          又由,所以,故命題為真.

          補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱”,即:

          “當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱,則”.此命題為真.(證略)

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為,

          由題意可知,即,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價(jià)于,

          當(dāng)時(shí),;當(dāng)時(shí),;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對(duì)任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          當(dāng)時(shí),,成立.

          假設(shè)當(dāng)時(shí),不等式成立,

          當(dāng)時(shí),, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

          方法二:?jiǎn)握{(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項(xiàng)公式,        …………10分

          ,    …………12分

          所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          已知點(diǎn)),過(guò)點(diǎn)作拋物線的切線,切點(diǎn)分別為(其中).

          (Ⅰ)若,求的值;

          (Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

          (Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

          求圓面積的最小值.

          【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

          中∵直線與曲線相切,且過(guò)點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

          (3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

          (Ⅰ)由可得,.  ------1分

          ∵直線與曲線相切,且過(guò)點(diǎn),∴,即

          ,或, --------------------3分

          同理可得:,或----------------4分

          ,∴. -----------------5分

          (Ⅱ)由(Ⅰ)知,,,則的斜率

          ∴直線的方程為:,又,

          ,即. -----------------7分

          ∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

          故圓的面積為. --------------------9分

          (Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

          ,

          當(dāng)且僅當(dāng),即,時(shí)取等號(hào).

          故圓面積的最小值

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案