日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A. B.1 C. D.5 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
          π3
          )=4
          的距離的最小值是
           

          B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
           

          C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
           

          查看答案和解析>>

          精英家教網(wǎng)A.選修4-1:幾何證明選講
          銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
          AB
          于點E,連接EC,求∠OEC.
          B.選修4-2:矩陣與變換
          曲線C1=x2+2y2=1在矩陣M=[
          12
          01
          ]的作用下變換為曲線C2,求C2的方程.
          C.選修4-4:坐標系與參數(shù)方程
          P為曲線C1
          x=1+cosθ
          y=sinθ
          (θ為參數(shù))上一點,求它到直線C2
          x=1+2t
          y=2
          (t為參數(shù))距離的最小值.
          D.選修4-5:不等式選講
          設(shè)n∈N*,求證:
          C
          1
          n
          +
          C
          2
          N
          +L+
          C
          N
          N
          n(2n-1)

          查看答案和解析>>

          精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
          求證:AB2=BE•CD.
          B.已知矩陣M
          2-3
          1-1
          所對應(yīng)的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標.
          C.已知圓的極坐標方程為:ρ2-4
          2
          ρcos(θ-
          π
          4
          )+6=0

          (1)將圓的極坐標方程化為直角坐標方程;
          (2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
          D.解不等式|2x-1|<|x|+1.

          查看答案和解析>>

          A.選修4-1:幾何證明選講
          如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
          求證:DE是⊙O的切線.
          B.選修4-2:矩陣與變換
          已知二階矩陣A有特征值-1及其對應(yīng)的一個特征向量為
          1
          -4
          ,點P(2,-1)在矩陣A對應(yīng)的變換下得到點P′(5,1),求矩陣A.
          C.選修4-4:坐標系與參數(shù)方程
          在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知直線l的極坐標方程為ρcos(θ-
          π
          4
          )=
          2
          ,曲線C的參數(shù)方程為
          x=2cosα
          y=sinα
          (α為參數(shù)),求曲線C截直線l所得的弦長.
          D.選修4-5:不等式選講
          已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

          查看答案和解析>>

          A.選修4-1:幾何證明選講
          如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
          求證:DE是⊙O的切線.
          B.選修4-2:矩陣與變換
          已知二階矩陣A有特征值-1及其對應(yīng)的一個特征向量為,點P(2,-1)在矩陣A對應(yīng)的變換下得到點P′(5,1),求矩陣A.
          C.選修4-4:坐標系與參數(shù)方程
          在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知直線l的極坐標方程為,曲線C的參數(shù)方程為(α為參數(shù)),求曲線C截直線l所得的弦長.
          D.選修4-5:不等式選講
          已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5分,共40分)

          1.B   2. B   3. C   4. C   5.D   6. B   7.C   8. B.

           

          二、填空題(本大題共6小題,每小題5分,共30分)

          9. 6,17,28,39,40,51,62,73 .  10. .     11. 0. 

          12. 20.   13. .     14. .    15. .

          三、解答題(本大題共6小題,共80分)

          16.(本小題滿分12分)

          解:(Ⅰ),即,

          ,∴.∵,∴

          (Ⅱ)mn

          |mn|

          ,∴,∴.從而

          ∴當=1,即時,|mn|取得最小值

          所以,|mn|

           

          17.(本小題滿分12分)

          解:(1)設(shè)擲兩顆正方體骰子所得的點數(shù)記為(x,y),其中,

          則獲一等獎只有(6,6)一種可能,其概率為:;   

          獲二等獎共有(6,5)、(5,6)、(4,6)、(6,4)、(5,5)共5種可能,其概率為:;

          設(shè)事件A表示“同行的三位會員一人獲一等獎、兩人獲二等獎”,則有:

          P(A)=;                        

          ξ

          30-a

          -70

          0

          30

          p

          (2)設(shè)俱樂部在游戲環(huán)節(jié)收益為ξ元,則ξ的可能取值為,,0,,…7分

          其分布列為:

           

           

           

           

          則:Eξ=

          由Eξ=0得:a=310,即一等獎可設(shè)價值為310 元的獎品。      

           

          18.(本小題滿分14分)

          證明:(1)取EC的中點是F,連結(jié)BF,

          則BF//DE,∴∠FBA或其補角即為異面直線DE與AB所成的角.

          在△BAF中,AB=,BF=AF=.∴

          ∴異面直線DE與AB所成的角的余弦值為.………5分

          (2)AC⊥平面BCE,過C作CG⊥DE交DE于G,連AG.

          可得DE⊥平面ACG,從而AG⊥DE

          ∴∠AGC為二面角A-ED-B的平面角.

          在△ACG中,∠ACG=90°,AC=4,CG=

          .∴

          ∴二面角A-ED-B的的正弦值為

          (3)

          ∴幾何體的體積V為16.

           

          方法二:(坐標法)(1)以C為原點,以CA,CB,CE所在直線為x,y,z軸建立空間直角坐標系.

          則A(4,0,0),B(0,4,0),D(0,4,2),E(0,0,4)

          ,∴

          ∴異面直線DE與AB所成的角的余弦值為

          (2)平面BDE的一個法向量為,

          設(shè)平面ADE的一個法向量為,

          從而,

          ,則,

          ∴二面角A-ED-B的的正弦值為

          (3),∴幾何體的體積V為16.

           

          19.(本小題滿分14分)

          【解】(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為,

          整理得 . ①   

              設(shè)是方程①的兩個不同的根,

              ∴,   ②                 

              且,由是線段的中點,得

              ,∴

              解得,代入②得,的取值范圍是(12,+∞).

              于是,直線的方程為,即     

              法2:設(shè),,則有

                  

              依題意,,∴.              

          的中點,

          ,,從而

          又由在橢圓內(nèi),∴,

          的取值范圍是.                          

          直線的方程為,即.       

          (Ⅱ)∵垂直平分,∴直線的方程為,即,

          代入橢圓方程,整理得.  ③         

          又設(shè),的中點為,則是方程③的兩根,

          到直線的距離,故所求的以線段的中點為圓心且與直線相切的圓的方程為:

          20.(本小題滿分14分)

          (Ⅰ)解:由題意得,,所以=

          (Ⅱ)證:令,,則=1

          所以=(1),=(2),

          (2)―(1),得=,

          化簡得(3)

          (4),(4)―(3)得

          在(3)中令,得,從而為等差數(shù)列

          (Ⅲ)記,公差為,則=

          ,

          ,當且僅當,即時等號成立

           

          21.(本小題滿分14分)

          解:(1)由題意,≥0在上恒成立,即

                   ∵θ∈(0,π),∴.故上恒成立,

                   只須,即,只有.結(jié)合θ∈(0,π),得

          (2)由(1),得

          在其定義域內(nèi)為單調(diào)函數(shù),

          或者在[1,+∞)恒成立.

           等價于,即,

               而 ,(max=1,∴

          等價于,即在[1,+∞)恒成立,

          ∈(0,1],

          綜上,m的取值范圍是

          (3)構(gòu)造,

          時,,,,所以在[1,e]上不存在一個,使得成立.

          時,

          因為,所以,所以恒成立.

          上單調(diào)遞增,,只要,

          解得.故的取值范圍是

            1.  

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>