日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若二次函數(shù)對任意實數(shù)x都有f(1+x)=f(1-x),且f(1)<f(2),則的大小關(guān)系為 . 查看更多

           

          題目列表(包括答案和解析)

          設(shè)二次函數(shù)f(x)=(k-4)x2+kx
           &(k∈R)
          ,對任意實數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
          (1)求函數(shù)f(x)的解析式和值域;
          (2)試寫出一個區(qū)間(a,b),使得當(dāng)a1∈(a,b)時,數(shù)列{an}在這個區(qū)間上是遞增數(shù)列,并說明理由;
          (3)已知,是否存在非零整數(shù)λ,使得對任意n∈N*,都有log3(
          1
          1
          2
          -a1
          )+log3(
          1
          1
          2
          -a2
          )+…+log3(
          1
          1
          2
          -an
          )>(-1)n-12λ+nlog32-1
          -1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

          查看答案和解析>>

          設(shè)二次函數(shù)f(x)=(k-4)x2+kx
          (k∈R)
          ,對任意實數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
          (1)求函數(shù)f(x)的解析式和值域;
          (2)證明:當(dāng)an∈(0,
          1
          2
          )
          時,數(shù)列{an}在該區(qū)間上是遞增數(shù)列;
          (3)已知a1=
          1
          3
          ,是否存在非零整數(shù)λ,使得對任意n∈N*,都有log3(
          1
          1
          2
          -a1
          )+log3(
          1
          1
          2
          -a2
          )+…+log3(
          1
          1
          2
          -an
          )>-
          1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

          查看答案和解析>>

          已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=g(x+
          1
          2
          )+mlnx+
          9
          8
          (m∈R,x>0)

          (1)求g(x)的表達式;
          (2)若?x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
          (3)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

          查看答案和解析>>

          已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時,有f(x)≤
          18
          (x+2)2
          成立.
          (1)證明:f(2)=2;
          (2)若f(-2)=0,求f(x)的表達式.

          查看答案和解析>>

          已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時,有f(x)≤
          1
          8
          (x+2)2
          成立.
          (1)證明:f(2)=2;
          (2)若f(-2)=0,f(x)的表達式;
          (3)設(shè)g(x)=f(x)-
          m
          2
          x
          ,x∈[0,+∞),若g(x)圖上的點都位于直線y=
          1
          4
          的上方,求實數(shù)m的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案