日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ⑴標準式:, ⑵頂點式: 查看更多

           

          題目列表(包括答案和解析)

          已知離心率為
          3
          2
          的橢圓C1的頂點A1,A2恰好是雙曲線
          x2
          3
          -y2=1
          的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設直線PA1,PA2的斜率分別為k1,k2
          (Ⅰ)求橢圓C1的標準方程;
          (Ⅱ)試判斷k1•k2的值是否與點P的位置有關,并證明你的結論;
          (Ⅲ)當k1=
          1
          2
          時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為
          4
          5
          5
          ,求實數(shù)m的值.
          設計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識,考察學生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

          查看答案和解析>>

          已知離心率為
          3
          2
          的橢圓C1的頂點A1,A2恰好是雙曲線
          x2
          3
          -y2=1
          的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設直線PA1,PA2的斜率分別為k1,k2
          (Ⅰ)求橢圓C1的標準方程;
          (Ⅱ)試判斷k1•k2的值是否與點P的位置有關,并證明你的結論;
          (Ⅲ)當k1=
          1
          2
          時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為
          4
          5
          5
          ,求實數(shù)m的值.
          設計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識,考察學生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

          查看答案和解析>>

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

          現(xiàn)有變換公式可把平面直角坐標系上的一點變換到這一平面上的一點.

          (1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點的坐標;

          (2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;

          (3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

          查看答案和解析>>

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

          現(xiàn)有變換公式可把平面直角坐標系上的一點變換到這一平面上的一點.

          (1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點的坐標;

          (2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;

          (3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

           

          查看答案和解析>>

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
          現(xiàn)有變換公式可把平面直角坐標系上的一點變換到這一平面上的一點.
          (1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點的坐標;
          (2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;
          (3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

          查看答案和解析>>


          同步練習冊答案