日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又且.所以平面EFD 查看更多

           

          題目列表(包括答案和解析)

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當(dāng)時,求證:;

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

          (Ⅱ)若為側(cè)棱PB的中點,求直線AE與底面所成角的正弦值.

          【解析】第一問中,利用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以第二問中結(jié)合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

           (Ⅰ) 證明:由用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以

          ………………………………………………6分

          (Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

          因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

          又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

          ………………………………………10分

          又PO=1/2AC=,也所以有EH=1/2PO=,

          由(Ⅰ)已證平面PBC,所以,即,

          ,

          于是

          所以直線AE與底面ABC 所成角的正弦值為

           

          查看答案和解析>>

          如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.

          (1)   求證:A1C⊥平面BCDE;

          (2)   若M是A1D的中點,求CM與平面A1BE所成角的大小;

          (3)   線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由

          【解析】(1)∵DE∥BC∴又∵

          (2)如圖,以C為坐標(biāo)原點,建立空間直角坐標(biāo)系C-xyz,

          設(shè)平面的法向量為,則,又,所以,令,則,所以

          設(shè)CM與平面所成角為。因為

          所以

          所以CM與平面所成角為。

           

          查看答案和解析>>

          如圖,ABCD是矩形,過點D作PD⊥平面ABCD,連接PA、PB、PC,E是PC上的一點,且DE⊥PC,過E作EF⊥PB于F.
          ①求證DE⊥BC;
          ②求證:平面PBD⊥平面EFD.

          查看答案和解析>>

          精英家教網(wǎng)如圖,平面ABCD⊥平面ABE,其中四邊形ABCD是正方形,△ABE是等邊三角形,且AB=2,點F、G分別是BC、AE的中點.
          (Ⅰ)求三棱錐F-ABE的體積;
          (Ⅱ)求證:BG∥平面EFD;
          (Ⅲ)若點P在線段DE上運動,求證:BG⊥AP.

          查看答案和解析>>


          同步練習(xí)冊答案