日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解答](1)證明:∵A1B1C1-ABC是正三棱柱.∴四邊形B1BCC1是矩形.連結(jié)B1C交BC1于E.則B1E=EC.連結(jié)DE.在△AB1C中.∵AD=DC.∴DE∥AB1.又AB1平面DBC1.DE平面DBC1.∴AB1∥平面DBC1. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)數(shù)列的各項均為正數(shù).若對任意的,存在,使得成立,則稱數(shù)列為“Jk型”數(shù)列.

          (1)若數(shù)列是“J2型”數(shù)列,且,求;

          (2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列是等比數(shù)列.

          【解析】1)中由題意,得,,…成等比數(shù)列,且公比

          所以.

          (2)中證明:由{}是“j4型”數(shù)列,得,…成等比數(shù)列,設(shè)公比為t. 由{}是“j3型”數(shù)列,得

          ,…成等比數(shù)列,設(shè)公比為;

          ,…成等比數(shù)列,設(shè)公比為;

          …成等比數(shù)列,設(shè)公比為;

           

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對任意的成立,求實數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域為

          ,得

          當(dāng)x變化時,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

          ,得

          ①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

          當(dāng)時,

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

          用數(shù)學(xué)歸納法證明:

          【解析】首先證明當(dāng)n=1時等式成立,再假設(shè)n=k時等式成立,得到等式

          ,

          下面證明當(dāng)n=k+1時等式左邊

          根據(jù)前面的假設(shè)化簡即可得到結(jié)果,最后得到結(jié)論.

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標(biāo)原點.

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點P的坐標(biāo)為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

          由條件得消去并整理得  ②

          ,,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

          由P在橢圓上,有

          因為,,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得

          所以.

           

          查看答案和解析>>

          已知R,函數(shù)

          ⑴若函數(shù)沒有零點,求實數(shù)的取值范圍;

          ⑵若函數(shù)存在極大值,并記為,求的表達(dá)式;

          ⑶當(dāng)時,求證:

          【解析】(1)求導(dǎo)研究函數(shù)f(x)的最值,說明函數(shù)f(x)的最大值<0,或f(x)的最小值>0.

          (2)根據(jù)第(1)問的求解過程,直接得到g(m).

          (3)構(gòu)造函數(shù),證明即可,然后利用導(dǎo)數(shù)求g(x)的最小值.

           

          查看答案和解析>>


          同步練習(xí)冊答案