日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .綜上.原結(jié)論成立. 查看更多

           

          題目列表(包括答案和解析)

          如圖2-4-18(1),四邊形ABCD是⊙O的內(nèi)接四邊形,A的中點(diǎn),過A點(diǎn)的切線與CB的延長(zhǎng)線交于點(diǎn)E.

                     

            (1)                               (2)

          圖2-4-18

          (1)求證:AB·DA=CD·BE;

          (2)如圖2-4-18(2),若點(diǎn)E在CB延長(zhǎng)線上運(yùn)動(dòng),使切線EA變?yōu)楦罹EFA,其他條件不變,問具備什么條件使原結(jié)論成立?

          查看答案和解析>>

          已知,(其中

          ⑴求;

          ⑵試比較的大小,并說明理由.

          【解析】第一問中取,則;                         …………1分

          對(duì)等式兩邊求導(dǎo),得

          ,則得到結(jié)論

          第二問中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),

          當(dāng)時(shí),;

          當(dāng)時(shí),;

          猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

          解:⑴取,則;                         …………1分

          對(duì)等式兩邊求導(dǎo),得,

          ,則。       …………4分

          ⑵要比較的大小,即比較:的大小,

          當(dāng)時(shí),;

          當(dāng)時(shí),;

          當(dāng)時(shí),;                              …………6分

          猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

          由上述過程可知,時(shí)結(jié)論成立,

          假設(shè)當(dāng)時(shí)結(jié)論成立,即

          當(dāng)時(shí),

          時(shí)結(jié)論也成立,

          ∴當(dāng)時(shí),成立。                          …………11分

          綜上得,當(dāng)時(shí),;

          當(dāng)時(shí),

          當(dāng)時(shí), 

           

          查看答案和解析>>

          已知數(shù)列的前項(xiàng)和為,且 (N*),其中

          (Ⅰ) 求的通項(xiàng)公式;

          (Ⅱ) 設(shè) (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當(dāng)時(shí),由.  ……2分

          若存在,

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對(duì)偶式)設(shè),

          .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                              ………10分

          證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

             ②假設(shè)時(shí),命題成立,即,

             則當(dāng)時(shí),

              即

          故當(dāng)時(shí),命題成立.

          綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以,

          從而.

          也即

           

          查看答案和解析>>

          已知函數(shù)①f(x)=2lnx;②f(x)=3ecosx;③f(x)=3ex;其中對(duì)于f(x)定義域內(nèi)的任意一個(gè)自變量都存在唯一個(gè)個(gè)自變量x2,使
          f(x1)f(x2)
          =3
          成立的函數(shù)是
           
          .(填上所有正確結(jié)論的序號(hào))

          查看答案和解析>>

          已知△ABC為鈍角三角形,且∠C為鈍角,函數(shù)y=f(x)在(0,1)上是減函數(shù),則下列結(jié)論成立的是( 。

          查看答案和解析>>


          同步練習(xí)冊(cè)答案