日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 因為 由(Ⅰ)知. 而. 查看更多

           

          題目列表(包括答案和解析)

          (2006•黃浦區(qū)二模)已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)求證:當x∈R+時,恒有f(
          1x
          )=-f(x)
          ;
          (3)求證:f(x)在(0,+∞)上為減函數(shù);
          (4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質,并給出證明.

          查看答案和解析>>

          已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)求證:當x∈R+時,恒有數(shù)學公式
          (3)求證:f(x)在(0,+∞)上為減函數(shù);
          (4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質,并給出證明.

          查看答案和解析>>

          已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)求證:當x∈R+時,恒有f(
          1
          x
          )=-f(x)
          ;
          (3)求證:f(x)在(0,+∞)上為減函數(shù);
          (4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質,并給出證明.

          查看答案和解析>>

          已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)求證:當x∈R+時,恒有;
          (3)求證:f(x)在(0,+∞)上為減函數(shù);
          (4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質,并給出證明.

          查看答案和解析>>

          已知中,,.設,記.

          (1)   求的解析式及定義域;

          (2)設,是否存在實數(shù),使函數(shù)的值域為?若存在,求出的值;若不存在,請說明理由.

          【解析】第一問利用(1)如圖,在中,由,,

          可得,

          又AC=2,故由正弦定理得

           

          (2)中

          可得.顯然,,則

          1當m>0的值域為m+1=3/2,n=1/2

          2當m<0,不滿足的值域為;

          因而存在實數(shù)m=1/2的值域為.

           

          查看答案和解析>>


          同步練習冊答案