日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ②設(shè)直線的方程為.代入 查看更多

           

          題目列表(包括答案和解析)

          已知平面直角坐標系中的點A(-1,0),B(3,2),求直線AB的方程的一個算法如下,請將其補充完整。
          第一步,根據(jù)題意設(shè)直線AB的方程為y=kx+b
          第二步,將A(-1,0),B(3,2)代入第一步所設(shè)的方程,得到-k+b=0①;3k+b=2②,
          第三步,(    )
          第四步,把第三步所得結(jié)果代入第一步所設(shè)的方程,得到
          第五步,將第四步所得結(jié)果整理,得到方程x-2y+1=0。

          查看答案和解析>>

          已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

          (Ⅰ)求橢圓C的標準方程;

          (Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

          【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。

          第一問中,可設(shè)橢圓的標準方程為 

          則由長軸長等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標準方程為

          第二問中,

          假設(shè)存在這樣的直線,設(shè),MN的中點為

           因為|ME|=|NE|所以MNEF所以

          (i)其中若時,則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得

          代入1,2式中得到范圍。

          (Ⅰ) 可設(shè)橢圓的標準方程為 

          則由長軸長等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標準方程為

           (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點為

           因為|ME|=|NE|所以MNEF所以

          (i)其中若時,則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得……②  ……………………9分

          代入①式得,解得………………………………………12分

          代入②式得,得

          綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

           

          查看答案和解析>>

          已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

          【解析】第一問利用設(shè)橢圓的方程為,由題意得

          解得

          第二問若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標分別為,

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標分別為,

          所以

          所以

          ,

          因為,即

          所以

          所以,解得

          因為A,B為不同的兩點,所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點P的坐標為.由題意,有  ①

          ,得

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點P的坐標為.

          由條件得消去并整理得  ②

          ,,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點P的坐標為.

          由P在橢圓上,有

          因為,,所以,即   ③

          ,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>

          已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

          (I)求曲線的方程;

          (II)試證明:在軸上存在定點,使得總能被軸平分

          【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,

          ,曲線的方程為

          第二問中,設(shè)點的坐標為,直線的方程為,  ………………3分   

          代入曲線的方程,可得 

          ,∴

          確定結(jié)論直線與曲線總有兩個公共點.

          然后設(shè)點,的坐標分別, ,則,  

          要使軸平分,只要得到。

          (1)設(shè)為曲線上的任意一點,則點在圓上,

          ,曲線的方程為.  ………………2分       

          (2)設(shè)點的坐標為,直線的方程為,  ………………3分   

          代入曲線的方程,可得 ,……5分            

          ,∴,

          ∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

          ………………6分

          設(shè)點,的坐標分別, ,則,   

          要使軸平分,只要,            ………………9分

          ,,        ………………10分

          也就是,,

          ,即只要  ………………12分  

          時,(*)對任意的s都成立,從而總能被軸平分.

          所以在x軸上存在定點,使得總能被軸平分

           

          查看答案和解析>>


          同步練習冊答案