日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. C. 查看更多

           

          題目列表(包括答案和解析)


          C.選修4—4:坐標(biāo)系與參數(shù)方程
          (本小題滿分10分)
          在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),判斷直線和圓的位置關(guān)系.

          查看答案和解析>>

          C選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
          在平面直角坐標(biāo)系中,求過橢圓為參數(shù))的右焦點(diǎn)且與直線為參數(shù))平行的直線的普通方程。

          查看答案和解析>>

          C.(選修4—4:坐標(biāo)系與參數(shù)方程)

          在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正

          半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),求直線

          得的弦的長(zhǎng)度.

           

          查看答案和解析>>

          C(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為為參數(shù)),直線l的極坐標(biāo)方程為.點(diǎn)P在曲線C上,則點(diǎn)P到直線l的距離的最小值為                

           

          查看答案和解析>>

          C.選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,已知曲線的參數(shù)方程是是參數(shù)),若以為極點(diǎn),軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.

           

           

           

          查看答案和解析>>

           

          一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

          1.A  。玻瓸   。常谩  。矗瓵  。担瓸

          6.D  。罚痢  。福谩  。梗瓺   10.C

           

          二、填空題:本大題共4小題,每小題4分,共16分.

          11.    12.    13.    14.

          15.       16.(也可表示成)    17.①②③

           

          三、解答題:本大題共6小題,共74分.

          18.解:(Ⅰ)由

                                                   ---------4分

          ,得

          ,即為鈍角,故為銳角,且

          .                                     ---------8分

          (Ⅱ)設(shè),

          由余弦定理得

          解得

          .                        ---------14分

           

          19.解:(Ⅰ)由,得

          則平面平面,

          平面平面,

          在平面上的射影在直線上,

          在平面上的射影在直線上,

          在平面上的射影即為點(diǎn),

          平面.                                 --------6分

          (Ⅱ)連接,由平面,得即為直線與平面所成角。

          在原圖中,由已知,可得

          折后,由平面,知

          ,即

          則在中,有,,則,

          即折后直線與平面所成角的余弦值為.       --------14分

           

          20.解:(Ⅰ)由

          ,故

          故數(shù)列為等比數(shù)列;                       --------6分

           

           

           

          (Ⅱ)由(Ⅰ)可知

          對(duì)任意的恒成立

          由不等式對(duì)恒成立,得

          .           --------14分

           

          21.解:

          (Ⅰ)由已知可得

          此時(shí),                                 --------4分

          的單調(diào)遞減區(qū)間為;----7分

          (Ⅱ)由已知可得上存在零點(diǎn)且在零點(diǎn)兩側(cè)值異號(hào)

          時(shí),,不滿足條件;

          時(shí),可得上有解且

          設(shè)

          ①當(dāng)時(shí),滿足上有解

          此時(shí)滿足

          ②當(dāng)時(shí),即上有兩個(gè)不同的實(shí)根

          無解

          綜上可得實(shí)數(shù)的取值范圍為.           --------15分

           

          22.解:(Ⅰ)(?)由已知可得

          則所求橢圓方程.          --------3分

          (?)由已知可得動(dòng)圓圓心軌跡為拋物線,且拋物線的焦點(diǎn)為,準(zhǔn)線方程為,則動(dòng)圓圓心軌跡方程為.     --------6分

          (Ⅱ)由題設(shè)知直線的斜率均存在且不為零

          設(shè)直線的斜率為,則直線的方程為:

          聯(lián)立

          消去可得                 --------8分

          由拋物線定義可知:

          -----10分

          同理可得                                --------11分

          (當(dāng)且僅當(dāng)時(shí)取到等號(hào))

          所以四邊形面積的最小值為.                   --------15分

           

           


          同步練習(xí)冊(cè)答案