日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .綜上所述.-----9分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)處取得極值2.

          ⑴ 求函數(shù)的解析式;

          ⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

          【解析】第一問中利用導(dǎo)數(shù)

          又f(x)在x=1處取得極值2,所以

          所以

          第二問中,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

          解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

          ⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

          當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                          …………12分

          .綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是

           

          查看答案和解析>>

          設(shè)函數(shù)

          (I)求的單調(diào)區(qū)間;

          (II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.

          【解析】第一問定義域?yàn)檎鏀?shù)大于零,得到.                            

          ,則,所以,得到結(jié)論。

          第二問中, ().

          .                          

          因?yàn)?<a<2,所以,.令 可得

          對(duì)參數(shù)討論的得到最值。

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          (I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">.           ………………………1分

          .                            

          ,則,所以.  ……………………3分          

          因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.                            

          ,則,所以

          因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.          ………………………5分

          所以函數(shù)的單調(diào)遞增區(qū)間為,

          單調(diào)遞減區(qū)間為.                         ………………………7分

          (II) ().

          .                          

          因?yàn)?<a<2,所以,.令 可得.…………9分

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          ①當(dāng),即時(shí),            

          在區(qū)間上,上為減函數(shù),在上為增函數(shù).

          所以.         ………………………10分  

          ②當(dāng),即時(shí),在區(qū)間上為減函數(shù).

          所以.               

          綜上所述,當(dāng)時(shí),;

          當(dāng)時(shí),

           

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

          (Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

          第一問中,利用當(dāng)時(shí),

          因?yàn)榍悬c(diǎn)為(), 則,                 

          所以在點(diǎn)()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當(dāng)時(shí),

          ,                                  

          因?yàn)榍悬c(diǎn)為(), 則,                  

          所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當(dāng)時(shí),上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當(dāng)時(shí),令,對(duì)稱軸,

          上單調(diào)遞增,又    

          ① 當(dāng),即時(shí),上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當(dāng)時(shí),, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案