日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解: (Ⅰ)取的中點,連結. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          單調(diào)遞減;當單調(diào)遞增,故當時,取最小值

          于是對一切恒成立,當且僅當.       、

          時,單調(diào)遞增;當時,單調(diào)遞減.

          故當時,取最大值.因此,當且僅當時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,

          從而,

          所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

           

          查看答案和解析>>

          從正方體的8個頂點中選取4個點,連接成一個四面體,則這個四面體可能為:①每個面都是直角三解形,②每個面都是等邊三解形,有且只有一個面是直角三角形,④有且只有一個面是等邊三角形,其中正確的說法有                (寫出所有正確結論的編號)

           

          查看答案和解析>>

          從正方體的8個頂點中選取4個點,連接成一個四面體,則這個四面體可能為:①每個面都是直角三解形,②每個面都是等邊三解形,有且只有一個面是直角三角形,④有且只有一個面是等邊三角形,其中正確的說法有                (寫出所有正確結論的編號)

          查看答案和解析>>

          從正方體的8個頂點中選取4個點,連接成一個四面體,則這個四面體可能為:①每個面都是直角三解形,②每個面都是等邊三解形,有且只有一個面是直角三角形,④有且只有一個面是等邊三角形,其中正確的說法有                (寫出所有正確結論的編號)

          查看答案和解析>>

          從正方體的8個頂點中選取4個點,連接成一個四面體,則這個四面體可能為:①每個面都是直角三解形,②每個面都是等邊三解形,有且只有一個面是直角三角形,④有且只有一個面是等邊三角形,其中正確的說法有________(寫出所有正確結論的編號)

          查看答案和解析>>


          同步練習冊答案