日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求函數(shù)的不動(dòng)點(diǎn), 查看更多

           

          題目列表(包括答案和解析)

          對(duì)于函數(shù)的“不動(dòng)點(diǎn)”;若 的“穩(wěn)定點(diǎn)”,函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即

             (1)求證:;

             (2)若的取值范圍.

          查看答案和解析>>

          已知函數(shù)f(x)=logax,g(x)=x,h(x)=ax
          (1)若a=2,設(shè)m(x)=h(x)-g(x),n(x)=g(x)-f(x),當(dāng)x>1時(shí),試比較m(x)與n(x)的大。ㄖ恍枰獙懗鼋Y(jié)果,不必證明);
          (2)若a=
          12
          ,設(shè)P是函數(shù)g(x)圖象在第一象限上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作平行于x軸的直線
          與函數(shù)h(x)和f(x)的圖象分別交于A、B兩點(diǎn),過點(diǎn)P作平行于y軸的直線與函數(shù)h(x)和f(x)的圖象分別交于C、D兩點(diǎn),求證:|AB|=|CD|.

          查看答案和解析>>

          已知函數(shù)f(x)=ex-
          1
          ex
          ,g(x)=ex+
          1
          ex
          ,動(dòng)直線x=t分別與函數(shù)y=f(x)、y=g(x)的圖象分別交于點(diǎn)A(t,f(t))、B(t,g(t)),在點(diǎn)A處作函數(shù)y=f(x)的圖象的切線,記為直線l1,在點(diǎn)B處作函數(shù)y=g(x)的圖象的切線,記為直線l2
          (Ⅰ)證明:不論t取何實(shí)數(shù)值,直線l1與l2恒相交;
          (Ⅱ)若直線l1與l2相交于點(diǎn)P,試求點(diǎn)P到直線AB的距離;
          (Ⅲ)當(dāng)t<0時(shí),試討論△PAB何時(shí)為銳角三角形?直角三角形?鈍角三角形?

          查看答案和解析>>

          已知函數(shù)f(x)=logax,g(x)=x,h(x)=ax
          (1)若a=2,設(shè)m(x)=h(x)-g(x),n(x)=g(x)-f(x),當(dāng)x>1時(shí),試比較m(x)與n(x)的大。ㄖ恍枰獙懗鼋Y(jié)果,不必證明);
          (2)若數(shù)學(xué)公式,設(shè)P是函數(shù)g(x)圖象在第一象限上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作平行于x軸的直線
          與函數(shù)h(x)和f(x)的圖象分別交于A、B兩點(diǎn),過點(diǎn)P作平行于y軸的直線與函數(shù)h(x)和f(x)的圖象分別交于C、D兩點(diǎn),求證:|AB|=|CD|.

          查看答案和解析>>

          已知函數(shù)f(x)=logax,g(x)=x,h(x)=ax
          (1)若a=2,設(shè)m(x)=h(x)-g(x),n(x)=g(x)-f(x),當(dāng)x>1時(shí),試比較m(x)與n(x)的大。ㄖ恍枰獙懗鼋Y(jié)果,不必證明);
          (2)若a=
          1
          2
          ,設(shè)P是函數(shù)g(x)圖象在第一象限上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作平行于x軸的直線
          與函數(shù)h(x)和f(x)的圖象分別交于A、B兩點(diǎn),過點(diǎn)P作平行于y軸的直線與函數(shù)h(x)和f(x)的圖象分別交于C、D兩點(diǎn),求證:|AB|=|CD|.

          查看答案和解析>>

          一、       選擇題

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          A

          C

          C

          C

          D

          B

          B

          C

          C

          B

          二、填空題

          題號(hào)

               11

              12

             13  

            14(1)

            14(2)

          答案

             6

            2

           

            3

          三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

          15.解:(Ⅰ),不等式的解為,

          ,

          (Ⅱ)由(Ⅰ)可知,,

          ,

          16、解:

           

             (I)函數(shù)的最小正周期是        ……………………………7分

            。↖I)∴   ∴   

               ∴               

              所以的值域?yàn)椋?sub>                 …………12分

          17、解:(1)因?yàn)?sub>,成等差數(shù)列,所以2f(2)=f(1)+f(4),

          即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

          (2+m)2=(1+m)(4+m),得m=0.

          (2) 若、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);

          f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

          因?yàn)椋╝+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

          所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

          所以:f(a)+f(c)<2f(b).

          18. 解:(Ⅰ)的定義域關(guān)于原點(diǎn)對(duì)稱

          為奇函數(shù),則  ∴a=0

          (Ⅱ)∴在上單調(diào)遞增

          上恒大于0只要大于0即可,∴

          上恒大于0,a的取值范圍為

          19. 解:(Ⅰ)設(shè)的公差為,則:,

          ,∴,∴. ………………………2分

          .  …………………………………………4分

          (Ⅱ)當(dāng)時(shí),,由,得.     …………………5分

          當(dāng)時(shí),,

          ,即.  …………………………7分

            ∴.   ……………………………………………………………8分

          是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分

          (Ⅲ)由(2)可知:.   ……………………………10分

          . …………………………………11分

          .    ………………………………………13分

          .  …………………………………………………14分

          20.解:(Ⅰ)設(shè)函數(shù)

             (Ⅱ)由(Ⅰ)可知

          可知使恒成立的常數(shù)k=8.

          (Ⅲ)由(Ⅱ)知 

          可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

          即以為首項(xiàng),8為公比的等比數(shù)列. 則 

           


          同步練習(xí)冊答案