日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當時..在上為增函數(shù) 8分 查看更多

           

          題目列表(包括答案和解析)

          設函數(shù)

          (1)當時,求曲線處的切線方程;

          (2)當時,求的極大值和極小值;

          (3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.

          【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數(shù)的正負確定單調性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

          解:(1)當……2分

             

          為所求切線方程!4分

          (2)當

          ………………6分

          遞減,在(3,+)遞增

          的極大值為…………8分

          (3)

          ①若上單調遞增!酀M足要求!10分

          ②若

          恒成立,

          恒成立,即a>0……………11分

          時,不合題意。綜上所述,實數(shù)的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)

          (1)若函數(shù)的圖象經過P(3,4)點,求a的值;

          (2)比較大小,并寫出比較過程;

          (3)若,求a的值.

          【解析】本試題主要考查了指數(shù)函數(shù)的性質的運用。第一問中,因為函數(shù)的圖象經過P(3,4)點,所以,解得,因為,所以.

          (2)問中,對底數(shù)a進行分類討論,利用單調性求解得到。

          (3)中,由知,.,指對數(shù)互化得到,,所以,解得所以, 或 .

          解:⑴∵函數(shù)的圖象經過,即.        … 2分

          ,所以.             ………… 4分

          ⑵當時,;

          時,. ……………… 6分

          因為,,

          時,上為增函數(shù),∵,∴.

          .當時,上為減函數(shù),

          ,∴.即.      …………………… 8分

          ⑶由知,.所以,(或).

          .∴,       … 10分

           或 ,所以, 或 .

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當時,求函數(shù)在點(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

          【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當時,  又    

          ∴  函數(shù)在點(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時,極大值為,無極小值

          時  極大值是,極小值是        ----------8分

          (Ⅲ)設,

          求導,得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實數(shù)的取值范圍是(,

           

          查看答案和解析>>

          8、如果對于函數(shù)f(x)定義域內任意的兩個自變量的值x1,x2,當x1<x2時,都有f(x1)≤f(x2),且存在兩個不相等的自變量值y1,y2,使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴格的增函數(shù),已知函數(shù)g(x)的定義域、值域分別為A、B,A=1,2,3,B⊆A,且g(x)為定義域A上的不嚴格的增函數(shù),那么這樣的g(x)共有( 。

          查看答案和解析>>

          如果對于函數(shù)f(x)定義域內任意的兩個自變量的值x1,x2,當x1<x2時,都有f(x1)≤f(x2),且存在兩個不相等的自變量值y1,y2,使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴格的增函數(shù),已知函數(shù)g(x)的定義域、值域分別為A、B,A=1,2,3,B⊆A,且g(x)為定義域A上的不嚴格的增函數(shù),那么這樣的g(x)共有( 。
          A.3個B.7個C.8個D.9個

          查看答案和解析>>


          同步練習冊答案