日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 根據(jù)拋物線的定義知,動點在以F為焦點,以直線m為準(zhǔn)線的拋物線上. ----4分 查看更多

           

          題目列表(包括答案和解析)

          設(shè)拋物線>0)的焦點為,準(zhǔn)線為,上一點,已知以為圓心,為半徑的圓,兩點.

          (Ⅰ)若,的面積為,求的值及圓的方程;

           (Ⅱ)若,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到,距離的比值.

          【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

          【解析】設(shè)準(zhǔn)線軸的焦點為E,圓F的半徑為,

          則|FE|=,=,E是BD的中點,

          (Ⅰ) ∵,∴=,|BD|=,

          設(shè)A(,),根據(jù)拋物線定義得,|FA|=

          的面積為,∴===,解得=2,

          ∴F(0,1),  FA|=,  ∴圓F的方程為:;

          (Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,

          由拋物線定義知,∴,∴的斜率為或-,

          ∴直線的方程為:,∴原點到直線的距離=,

          設(shè)直線的方程為:,代入得,,

          只有一個公共點, ∴=,∴,

          ∴直線的方程為:,∴原點到直線的距離=,

          ∴坐標(biāo)原點到,距離的比值為3.

          解析2由對稱性設(shè),則

                點關(guān)于點對稱得:

               得:,直線

               切點

               直線

          坐標(biāo)原點到距離的比值為

           

          查看答案和解析>>

          請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計分.
          (1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接B、D,若BC=
          5
          -1
          ,求AC的長.
          (2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點F為極點,射線FO(O為坐標(biāo)原點)為極軸,點M為雙曲線上任意一點,其極坐標(biāo)是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關(guān)系式(將ρ用θ表示).

          查看答案和解析>>

          請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計分.
          (1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接B、D,若BC=數(shù)學(xué)公式,求AC的長.
          (2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點F為極點,射線FO(O為坐標(biāo)原點)為極軸,點M為雙曲線上任意一點,其極坐標(biāo)是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關(guān)系式(將ρ用θ表示).

          查看答案和解析>>

          請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計分.
          (1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接B、D,若BC=,求AC的長.
          (2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點F為極點,射線FO(O為坐標(biāo)原點)為極軸,點M為雙曲線上任意一點,其極坐標(biāo)是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關(guān)系式(將ρ用θ表示).

          查看答案和解析>>

          已知集合是平行四邊形,是矩形,是正方形,是菱形,則

          (A)         (B)         (C)      (D)

           

          【解析】根據(jù)四邊形的定義和分類可知選B.

           

          查看答案和解析>>


          同步練習(xí)冊答案